latex数学表达式

摘要

日常总是在用的时候,发现不会写的,就去网上查,因为没仔细总结,直接无脑粘贴,以至于会反复的查询相同的问题,借魔训的机会,把latex中需要用到的数学表达式进行总结。

公式编号

自动编号

\begin{equation} \label{equation:1}
  a + b = c
\end{equation}

latex自动编号效果### 手动编号
\mathbf{A} = \mathbf{B} + \mathbf{C} \tag{1}
A = B + C (2) \mathbf{A} = \mathbf{B} + \mathbf{C} \tag{2} A=B+C(2)

符号表(持续更新)

TypeCmdResult
无穷\infty ∞ \infty
向量\mathbf{x} x \mathbf{x} x
矩阵\mathbf{X} X \mathbf{X} X
实数集\mathbb{R} R \mathbb{R} R
空集\emptyset ∅ \emptyset
关系圈乘\circ ∘ \circ
竖线\vert ∣ \vert
双竖线\Vert ∥ \Vert
下标s_1 s 1 s_1 s1
\times × \times ×
\frac {a} {b} a b \frac {a} {b} ba
平方3^2 3 2 3^2 32
开方\sqrt{2} 2 \sqrt{2} 2
求和\sum_{i=1}^{4} x_i ∑ i = 1 4 x i \sum_{i=1}^{4} x_i i=14xi
连乘\prod_{i=1}^{4} x_i ∏ i = 1 4 x i \prod_{i=1}^{4} x_i i=14xi
分数\frac {1} {3} 1 3 \frac {1} {3} 31
积分\int_{0}^{2} x^2\mathrm{d} ∫ 0 2 x 2 d x \int_{0}^{2} x^2\mathrm{d}x 02x2dx
子集\subset ⊂ \subset
包含\subseteq ⊆ \subseteq
任意\forall ∀ \forall
存在\exists ∃ \exists
左单箭头\leftarrow ← \leftarrow
左双箭头\leftarrow ⇐ \Leftarrow
右单箭头\rightarrow → \rightarrow
指向右单箭头\to → \to
右双箭头\rightarrow ⇒ \Rightarrow
上单箭头\uparrow ↑ \uparrow
上双箭头\uparrow ⇑ \Uparrow
下单箭头\downarrow ↓ \downarrow
下双箭头\downarrow ⇓ \Downarrow
左右单箭头\leftrightarrow ↔ \leftrightarrow
左右双箭头\Leftrightarrow ⇔ \Leftrightarrow
上下单箭头\updownarrow ↕ \updownarrow
上下双箭头\Updownarrow ⇕ \Updownarrow
无括号矩阵\left( \begin{\matrix}a &b &c\end{\matrix}\right) ( a b c d e f ) \left( \begin{matrix}a &b &c\\d&e&f\end{matrix}\right) (adbecf)
圆括号矩阵\begin{\pmatrix}a &b &c \d&e&f\end{\pmatrix} ( a b c d e f ) \begin{pmatrix}a &b &c\\d&e&f\end{pmatrix} (adbecf)
方括号矩阵\begin{\bmatrix}a &b &c\d&e&f\end{\bmatrix} [ a b c d e f ] \begin{bmatrix}a &b &c\\d&e&f\end{bmatrix} [adbecf]
竖线矩阵\begin{\vmatrix}a &b &c\d&e&f\end{\vmatrix} ∣ a b c d e f ∣ \begin{vmatrix}a &b &c\\d&e&f\end{vmatrix} adbecf
花括号矩阵\begin{\Bmatrix}a &b &c\d&e&f\end{\Bmatrix} { a b c d e f } \begin{Bmatrix}a &b &c\\d&e&f\end{Bmatrix} {adbecf}
双竖线矩阵\begin{\Vmatrix}a &b &c\d&e&f\end{\Vmatrix} ∥ a b c d e f ∥ \begin{Vmatrix}a &b &c\\d&e&f\end{Vmatrix} adbecf

关系表达(持续更新)

  1. a \in \mathbf{B}=> a ∈ B a \in \mathbf{B} aB
  2. \mathbf{A} \subseteq \mathbf{B} => A ⊆ B \mathbf{A} \subseteq \mathbf{B} AB
  3. \mathbf{X} \cup \mathbf{Y}=> X ∪ Y \mathbf{X} \cup \mathbf{Y} XY
  4. \mathbf{X} \cap \mathbf{Y}=> X ∩ Y \mathbf{X} \cap \mathbf{Y} XY
  5. \mathbf{X} \setminus \mathbf{Y}=> X ∖ Y \mathbf{X} \setminus \mathbf{Y} XY
  6. \overline{\mathbf{X}} = \mathbf{U} \setminus \mathbf{X}=> X ‾ = U ∖ X . \overline{\mathbf{X}} = \mathbf{U} \setminus \mathbf{X}. X=UX.
  7. \underline{\mathbf{X}} = \mathbf{U} \setminus \mathbf{X}=> X ‾ = U ∖ X . \underline{\mathbf{X}} = \mathbf{U} \setminus \mathbf{X}. X=UX.
  8. \mathbf{X} = {x_i}_{i = 1}^n = {x_1, x_2, \dots, x_n}=> X = { x i } i = 1 n = { x 1 , x 2 , … , x n } \mathbf{X} = \{x_i\}_{i = 1}^n = \{x_1, x_2, \dots, x_n\} X={xi}i=1n={x1,x2,,xn}
  9. 2^{\mathbf{A}} = {\mathbf{B} \vert \mathbf{B} \subseteq \mathbf{A}}=> 2 A = { B ∣ B ⊆ A } 2^{\mathbf{A}} = \{\mathbf{B} \vert \mathbf{B} \subseteq \mathbf{A}\} 2A={BBA}
  10. $\left(\mathbf{S}=\sum_i^n\textrm{x}_i\right)$=> ( S = ∑ i n x i ) \left(\mathbf{S}=\sum_i^n\textrm{x}_i\right) (S=inxi)
  11. $ $ \left(\mathbf{S}=\sum_i^n\textrm{x}_i\right) \tag{2} $ $ => ( S = ∑ i n x i ) (3) \left(\mathbf{S}=\sum_i^n\textrm{x}_i\right) \tag{3} (S=inxi)(3)
  12. \mathbf{A} \times \mathbf{B} = {(a, b) \vert a \in \mathbf{A}, b \in \mathbf{B}}=> A × B = { ( a , b ) ∣ a ∈ A , b ∈ B } \mathbf{A} \times \mathbf{B} = \{(a, b) \vert a \in \mathbf{A}, b \in \mathbf{B}\} A×B={(a,b)aA,bB}
  13. \mathbf{A} \times \mathbf{B} \ne \mathbf{B} \times \mathbf{A}=> A × B ≠ B × A \mathbf{A} \times \mathbf{B} \ne \mathbf{B} \times \mathbf{A} A×B=B×A

向量矩阵运算(持续更新)

  1. \mathbf{x}^{\mathrm{T}} = [x_1; x_2; \dots; x_m]=> x T = [ x 1 ; x 2 ; …   ; x m ] \mathbf{x}^{\mathrm{T}} = [x_1; x_2; \dots; x_m] xT=[x1;x2;;xm]
  2. \mathbf{a} \cdot \mathbf{b} = \mathbf{a} \mathbf{b}^\mathrm{T} = \sum_{i=1}^n a_i b_i=> a ⋅ b = a b T = ∑ i = 1 n a i b i \mathbf{a} \cdot \mathbf{b} = \mathbf{a} \mathbf{b}^\mathrm{T} = \sum_{i=1}^n a_i b_i ab=abT=i=1naibi
  3. \mathbf{x}\mathbf{w}^{T} \sum_i^nx_iw_i=> x w T = ∑ i n x i w i \mathbf{x}\mathbf{w}^T=\sum_i^nx_iw_i xwT=inxiwi

数学知识总结(持续更新)

  • 一个集合元素 n个元素要么选, 要么不选, 相当于 n 位二进制数, 所以有 2 n 2^n 2n种可能. 这也是幂集的来由.

  • 给定 A = { a , b , c , d } \mathbf{A} = \{a, b, c, d\} A={a,b,c,d} 上的关系 R \mathbf{R} R

    正闭包: R + = ⋃ i = 1 ∣ A ∣ R i \mathbf{R}^+ = \bigcup_{i = 1}^{\vert \mathbf{A} \vert} \mathbf{R}^i R+=i=1ARi

    克林闭包: R ∗ = R + ∪ R 0 \mathbf{R}^* = \mathbf{R}^+ \cup \mathbf{R}^0 R=R+R0, 其中 R 0 = { ( x , x ) ∣ x ∈ A } \mathbf{R}^0 = \{(x, x) \vert x \in \mathbf{A}\} R0={(x,x)xA}

踩坑记录(持续更新)

  1. 行内公式,csdn中$与表达式间不能用空格,如$\mathbf{x} $ 或$ \mathbf{x}$ 都无法得到 x \mathbf{x} x, 只有$\mathbf{x}$才能得到,且第一个$前需要一个空格分隔.

作业(持续更新)

2021.7.26

  1. 令 A = { 3 , 5 } \mathbf{A} = {3, 5} A={3,5}, 写出 2 A 2^{\mathbf{A}} 2A
    { ∅ \emptyset },{3},{5},{3,5}
  2. 展开 2 ∅ 2^{\emptyset} 2
    ∅ \emptyset { ∅ } \{\emptyset\} {}
  3. A \mathbf{A} A = {5, 6, 7, 8, 9} 写出 A \mathbf{A} A的其它两种表示法
    A = { x ∣ x ∈ N , x = 5 , 6 , 7 , 8 , 9 } \mathbf{A}=\{x|x \in \mathbf{N}, x=5,6,7,8,9\} A={xxN,x=5,6,7,8,9}
    A = { x ∈ N ∣ x = 5 , 6 , 7 , 8 , 9 } \mathbf{A}=\{x \in \mathbf{N} |x=5,6,7,8,9\} A={xNx=5,6,7,8,9}
  4. 自己出数据, 做一个 3 × \times × 2 与 2 × \times × 4 的矩阵乘法
    A = [ 1 2 3 4 5 6 ] \mathbf{A}= \begin{bmatrix}1 &2\\3&4\\5&6\end{bmatrix} A=135246
    B = [ 7 8 9 10 11 12 13 14 ] \mathbf{B}= \begin{bmatrix}7&8&9&10\\11&12&13&14\end{bmatrix} B=[7118129131014]
    A × B = [ 1 ∗ 7 + 2 ∗ 11 1 ∗ 8 + 2 ∗ 12 1 ∗ 9 + 2 ∗ 13 1 ∗ 10 + 2 ∗ 14 3 ∗ 7 + 4 ∗ 11 3 ∗ 8 + 4 ∗ 12 3 ∗ 9 + 4 ∗ 13 3 ∗ 10 + 4 ∗ 14 5 ∗ 7 + 6 ∗ 11 5 ∗ 8 + 6 ∗ 12 5 ∗ 9 + 6 ∗ 13 5 ∗ 10 + 6 ∗ 14 ] \mathbf{A} \times \mathbf{B}= \begin{bmatrix} 1*7+2*11&1*8+2*12&1*9+2*13&1*10+2*14\\3*7+4*11&3*8+4*12&3*9+4*13&3*10+4*14\\5*7+6*11&5*8+6*12&5*9+6*13&5*10+6*14\end{bmatrix} A×B=17+21137+41157+61118+21238+41258+61219+21339+41359+613110+214310+414510+614
    ⇓ \Downarrow
    A × B = [ 29 32 35 38 65 72 79 86 101 112 123 134 ] \mathbf{A} \times \mathbf{B}= \begin{bmatrix} 29&32&35&38\\65&72&79&86\\101&112&123&134\end{bmatrix} A×B=2965101327211235791233886134

2021.7.27

  1. A = { 1 , 2 , 5 , 8 , 9 } \mathbf{A} = \{1, 2, 5, 8, 9\} A={1,2,5,8,9}, 写出 A \mathbf{A} A 上的 “模 2 同余”
    关系及相应的划分

    模2同余关系: R = { ( a , b ) ∈ A × A ∣ a m o d    2 = b m o d    2 } \mathbf{R} = \{(a, b) \in \mathbf{A} \times \mathbf{A} \vert a \mod 2 = b \mod 2\} R={(a,b)A×Aamod2=bmod2}
    划分: P = { { 1 , 5 , 9 } , { 2 , 8 } } \mathcal{P}=\{\{1,5,9\},\{2,8\}\} P={{1,5,9},{2,8}}

  2. A = { 1 , 2 , 5 , 8 , 9 } \mathbf{A} = \{1, 2, 5, 8, 9\} A={1,2,5,8,9}, 自己给定两个关系 R 1 \mathbf{R}_1 R1 R 2 \mathbf{R}_2 R2, 并计算 R 1 ∘ R 2 \mathbf{R}_1 \circ \mathbf{R}_2 R1R2, R 1 + , R 1 ∗ \mathbf{R}_1^+,\mathbf{R}_1^* R1+,R1

    R 1 = { ( 1 , 5 ) , ( 1 , 2 ) , ( 5 , 2 ) } \mathbf{R_1} = \{\left(1,5\right),\left(1,2\right), \left(5,2\right)\} R1={(1,5),(1,2),(5,2)} R 2 = { ( 1 , 8 ) , ( 2 , 5 ) } \mathbf{R_2} = \{\left(1,8\right),\left(2,5\right)\} R2={(1,8),(2,5)}

    R 1 ∘ R 2 = { ( 1 , 5 ) } \mathbf{R_1} \circ \mathbf{R_2} = \{\left(1,5\right)\} R1R2={(1,5)}

    R 1 2 = { ( 1 , 2 ) } \mathbf{R_1^2}=\{\left(1,2\right)\} R12={(1,2)}

    R 1 3 = ∅ \mathbf{R_1^3}=\emptyset R13=

    R 1 4 = ∅ \mathbf{R_1^4}=\emptyset R14=

    R 1 + = R 1 1 ∪ R 1 2 ∪ R 1 3 ∪ R 1 4 ∪ R 1 5 = { ( 1 , 5 ) , ( 1 , 2 ) , ( 5 , 2 ) } \mathbf{R}_1^+ =\mathbf{R_1^1} \cup\mathbf{R_1^2}\cup\mathbf{R_1^3}\cup\mathbf{R_1^4}\cup\mathbf{R_1^5}=\{\left(1,5\right),\left(1,2\right), \left(5,2\right)\} R1+=R11R12R13R14R15={(1,5),(1,2),(5,2)}

    R 1 ∗ = R 1 + ∪ R 0 = { ( 1 , 5 ) , ( 1 , 2 ) , ( 5 , 2 ) , ( 1 , 1 ) , ( 2 , 2 ) , ( 5 , 5 ) , ( 8 , 8 ) , ( 9 , 9 ) } \mathbf{R}_1^* =\mathbf{R}_1^+\cup \mathbf{R_0}=\{\left(1,5\right),\left(1,2\right), \left(5,2\right),\left(1,1\right),\left(2,2\right),\left(5,5\right),\left(8,8\right),\left(9,9\right)\} R1=R1+R0={(1,5),(1,2),(5,2),(1,1),(2,2),(5,5),(8,8),(9,9)}

  3. 查阅粗糙集上下近似的定义并大致描述
    上近似和下近似:上近似是指包含 给定集合 X 元素的最小可定义集。下近似则是包含于X的最大可定义集

  4. 自己给定一个矩阵并计算其各种范数
    A = [ 1 − 2 3 4 ] \mathbf{A}= \begin{bmatrix}1 &-2\\3&4\end{bmatrix} A=[1324]
    l 0 = ∥ A ∥ 0 = 3 \mathrm{l}_0=\Vert\mathbf{A}\Vert_{0}=3 l0=A0=3(count element larger that zero)
    l 1 = ∥ A ∥ 1 = ∑ i , j ∣ a i j ∣ = 1 + 2 + 3 + 4 = 10 \mathrm{l}_1=\Vert\mathbf{A}\Vert_{1}=\sum_{i,j}\vert a_{ij}\vert=1+2+3+4=10 l1=A1=i,jaij=1+2+3+4=10
    l 2 2 = ∥ A ∥ 2 2 = 1 2 + ( − 2 ) 2 + 3 2 + 4 2 = 30 \mathrm{l}_2^2=\Vert\mathbf{A}\Vert_{2}^2= 1^2+(-2)^2+3^2+4^2=30 l22=A22=12+(2)2+32+42=30
    l 2 = l 2 2 = 30 \mathrm{l}_2=\sqrt{\mathrm{l}_2^2}=\sqrt{30} l2=l22 =30
    l ∞ = ∥ A ∥ ∞ = 4 \mathrm{l}_\infty=\Vert\mathbf{A}\Vert_{\infty}= 4 l=A=4(maximum element)
    l − ∞ = ∥ A ∥ − ∞ = − 2 \mathrm{l}_{-\infty}=\Vert\mathbf{A}\Vert_{-{\infty}}= -2 l=A=2(minimum element)

  5. 举例说明你对函数的认识
    万物皆函数,建模,例如单位圆为 x 2 + y 2 = 1 , 单 位 球 为 x 2 + y 2 + z 2 = 1 x^2+y^2=1,单位球为x^2+y^2+z^2=1 x2+y2=1x2+y2+z2=1

  6. 解释 推荐系统: 问题、算法与研究思路 2.1 中的优化目标各符号及含义
    min ⁡ ∑ ( i , j ) ∈ Ω ( f ( x i , t j ) − r i j ) 2 \min \sum_{(i, j) \in \Omega} (f(\mathbf{x}_i, \mathbf{t}_j) - r_{ij})^2 min(i,j)Ω(f(xi,tj)rij)2

    其实就是最小二乘, f ( x i , t j ) 为 计 算 值 , r i j f(\mathbf{x}_i, \mathbf{t}_j)为计算值, r_{ij} f(xi,tj)rij为真实值,逐步优化拟合值与真实值之间最小二乘,其实这里应该要加上一个二次罚函数正则项以避免过拟合

2021.7.28

  1. 将向量下标为偶数的分量 (x2, x4, …) 累加, 写出相应表达式
    ∑ i m o d    2 = 0 n x i \sum_{i\mod2 = 0}^{n} x_i imod2=0nxi

  2. 各出一道累加、累乘、积分表达式的习题, 并给出标准答案
    X = { 1 , 2 , 3 , 4 } \mathbf{X}=\{1,2,3,4\} X={1,2,3,4}
    ∑ i = 1 4 x i = 10 (4) \sum_{i=1}^{4} x_i=10 \tag{4} i=14xi=10(4)
    ∏ i = 1 4 x i = 24 (5) \prod_{i=1}^{4} x_i=24 \tag{5} i=14xi=24(5)

    ∫ 0 2 x 2 d x = 1 3 x 3 ∣ 0 2 = 8 3 (6) \int_{0}^{2} x^2\mathrm{d}x=\frac {1} {3} \mathrm{x}^3\vert_0^2=\frac {8} {3} \tag{6} 02x2dx=31x302=38(6)

  3. 你使用过三重累加吗? 描述一下其应用
    背包算法?物品大小,价格,重量三个维度?

  4. 给一个常用的定积分, 将手算结果与程序结果对比
    手算过程参考题12, ∫ 0 2 x 2 d x = 8 3 \int_{0}^{2} x^2\mathrm{d}x=\frac {8} {3} 02x2dx=38 程序运行积分结果

  5. 自己写一个小例子 ( n = 3 , m = 1 n=3,m=1 n=3,m=1) 来验证最小二乘法

x 1 \mathrm{x_1} x1 x 2 \mathrm{x_2} x2 x 3 \mathrm{x_3} x3 y \mathrm{y} y
24620
2.14.46.122
1.94.25.719.6

x = [ x 1 x 2 x 3 ]   w = [ 3 2 1 ] (7) \mathbf{x}=\begin{bmatrix}\mathrm{x_1}&\mathrm{x_2}&\mathrm{x_3}\end{bmatrix} \space \mathbf{w}=\begin{bmatrix}3\\2\\1\end{bmatrix} \tag{7} x=[x1x2x3] w=321(7)

y = x w = 3 × x 1 + 2 × x 2 + x 3 (8) \mathbf{y}=\mathrm{x}\mathrm{w}=3 \times \mathrm{x_1}+2\times \mathrm{x_2}+\mathrm{x_3} \tag{8} y=xw=3×x1+2×x2+x3(8)

  1. 自己推导一遍, 并描述这个方法的特点 (不少于 5 条)

逻辑回归假设与代价选择

  • 实现简单,广泛的应用于工业问题上;
  • 分类时计算量非常小,速度很快,存储资源低;
  • 便利的观测样本概率分数;
  • 对逻辑回归而言,多重共线性并不是问题,它可以结合L2正则化来解决该问题;
  • 计算代价不高,易于理解和实现;

20210802

  1. 定义无向网络

Definition 11.4 A non-directed net is a tuple G = ( V , w ) G = (\mathbf{V}, w) G=(V,w), where V \mathbf{V} V is the set of nodes, and w : V × V → R w: \mathbf{V} \times \mathbf{V} \to \mathbb{R} w:V×VR is the weight function, Where ∀ edge ( v i , v j ) \forall \textrm{edge} \left(v_i,v_j\right) edge(vi,vj), Satisfying w ( i , j ) = w ( j , i ) w\left(i,j\right)=w\left(j,i\right) w(i,j)=w(j,i).

  1. 自己画一棵树, 将其元组各部分写出来 (特别是函数 p p p).

在这里插入图片描述
T = ( V , r , p ) T = (\mathbf{V}, r, p) T=(V,r,p)
V \mathbf{V} V={1,2,3,4}
r = 1 r=1 r=1
p ( 3 ) = p ( 4 ) = 2 p(3)=p(4)=2 p(3)=p(4)=2
p ( 2 ) = 1 p(2)=1 p(2)=1
p ( 1 ) = ϕ p(1)=\phi p(1)=ϕ

  1. 针对该树, 将代码中的变量值写出来 (特别是 parent 数组).
    p a r e n t \mathrm{parent} parent[0]=-1
    p a r e n t \mathrm{parent} parent[1]=0
    p a r e n t \mathrm{parent} parent[2]=1
    p a r e n t \mathrm{parent} parent[3]=1

  2. 画一棵三叉树, 并写出它的 child 数组.
    在这里插入图片描述
    [ 2 − 1 3 4 5 6 − 1 − 1 − 1 ] \begin{bmatrix}2&-1&3\\4&5&6\\-1&-1&-1\end{bmatrix} 241151361

  3. 按照本贴风格, 重新定义树. 提示: 还是应该定义 parent 函数, 字母表里面只有一个元素.
    Let ϕ \phi ϕ be the empty node, an 1-tree is a T r e e \mathbf{Tree} Tree = ( V , r , Σ , c \mathbf{V}, r, \Sigma,c V,r,Σ,c) where
    V \mathbf{V} V is the set of nodes;
    r ∈ V r \in \mathbf{V} rV is the root node;
    Σ \Sigma Σ is the alphabet(only one char);
    c : V × Σ ∗ → V ∪ { ϕ } c: \mathbf{V} \times \Sigma^* \to \mathbf{V} \cup \{\phi\} c:V×ΣV{ϕ} satisfying
    ∀ v ∈ V , ∃ 1 s ∈ Σ ∗ \forall v \in \mathbf{V}, \exists 1 s \in \Sigma^* vV,1sΣ s.t. c ( r , s ) = v c\left(r,s\right)=v c(r,s)=v

  4. 根据图、树、m-叉树的学习, 谈谈你对元组的理解.
    元组是把数据结构抽象到元组里,方便建模计算,有的可以用二元组,有的可以用三元组,N维就用N元组,元组之间的关系运算也非常有用,例如图的一阶可达,二阶/n阶可达及路径数都能很清晰的表达出来。

20210803

  1. 定义一个标签分布系统, 即各标签的值不是 0/1, 而是 [ 0 , 1 ] \begin{bmatrix}0,1\end{bmatrix} [01]区间的实数, 且同一对象的标签和为 1.
    Definition 6. A label distribution system is a tuple S = ( X , Y ) \mathbf{S} = \left (\mathbf{X},\mathbf{Y}\right) S=(X,Y) where X = [ x i j ] n × m ∈ R n × m \mathbf{X}=\begin{bmatrix}x_{ij}\end{bmatrix}_{n \times m} \in \mathbb{R}^{n \times m} X=[xij]n×mRn×m is the data matrix, Y = [ x i k ] n × l ∈ [ 0 , 1 ] n × l \mathbf{Y}=\begin{bmatrix}x_{ik}\end{bmatrix}_{n \times l} \in \begin{bmatrix}0,1\end{bmatrix}^{n \times l} Y=[xik]n×l[0,1]n×l is the label matrix, Satisfying ∀ i ∈ ( 0 … n ) \forall i \in \left( 0 \dots n\right) i(0n), ∑ k = 1 l { y i k } n × l = 1 \sum_{k=1}^l\begin{Bmatrix}y_{ik}\end{Bmatrix}^{n \times l}=1 k=1l{yik}n×l=1, Where n n n is the number is instances, m m m is the number of features, and l l l is the number of labels.

  2. 找一篇你们小组的论文来详细分析数学表达式, 包括其涵义, 规范, 优点和缺点
    需要时间研究.

  • 2
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值