- 博客(15)
- 资源 (1)
- 收藏
- 关注
原创 DEA各种模型原理及stata代码实现
DEA各种模型原理及stata代码实现DEA各种模型原理及stata代码实现一、CCR和BCC1.原理2.效率测算stata代码3.Malmquist指数3.1M指数3.2Global-Malmquist指数4.指数计算代码与案例二、SBM模型1.原理2.stata代码实现三、方向性距离函数(DDF)1.原理2.stata代码实现3.非径向DDF模型(NDDF)3.GML指数4.指数测算四、总结DEA各种模型原理及stata代码实现一、CCR和BCC1.原理CCR模型产出导向下的效率通过求解以下规划
2021-09-28 15:50:26 42943 88
原创 python画动态图(gif)
文章目录python画动态图(gif)1.散点图gif2.三维散点图(gif)python画动态图(gif)1.散点图gif## 不加这行代码会导致无法显示%matplotlib notebook from matplotlib import pyplot as pltimport numpy as npfrom matplotlib import animationplt.rcParams['font.sans-serif'] = ['KaiTi']plt.rcParams['axes
2021-01-24 16:55:51 4354 4
原创 带有非期望产出的SBM模型(python)
文章目录带有非期望产出的SBM模型(python实现)1.原理2.python代码3.使用案例带有非期望产出的SBM模型(python实现)from scipy.optimize import minimizeimport numpy as npimport pandas as pdimport scipy.optimize as op1.原理带有非期望产出的SBM模型(原型): 带有非期望产出的SBM模型(原型):带有非期望产出的SBM模型(原型): ϕ∗=min1−1m∑i=1m(Si
2021-01-22 16:08:29 13036 23
原创 机器学习算法(2)
目录聚类和感知机(可直接运行)3.聚类算法3.1 Kmeans聚类3.1.1算法简单实现3.1.2 使用4.感知器4.1 算法实现4.2使用聚类和感知机(可直接运行)3.聚类算法3.1 Kmeans聚类3.1.1算法简单实现import pandas as pdimport numpy as npfrom sklearn import datasets import matplotlib.pyplot as pltfrom sklearn.model_selection import t
2021-01-22 15:48:33 250 1
原创 python求解线性规划
文章目录python求解线性规划1.scipy库2.pulp库3.cvxopt库4.求解二次规划import numpy as npimport scipyfrom scipy.optimize import linprog python求解线性规划模块名特点scipyAdaconda自带,功能强大pulp求解准确cvxopt可求解二次规划1.scipy库max350X1+300X2 max\kern1em 350X_1+300X_2max350X1
2021-01-20 22:45:57 1077 1
原创 MySql基础笔记
文章目录1.mysql入门1.1 mysql的常见命令1.2 DQL语言(Data Query Language)1.2.1 基础查询1.2.2 条件查询1.2.3 排序查询1.2.4 常见函数1.2.5 分组查询1.2.6 多表查询(mysql 92)1.2.7 连接查询(mysql 99)1.2.8 子查询1.2.9 分页查询1.2.10 联合查询1.3 DML语言(Data Manipulation Language)1.3.1 基本内容1.3.2 插入1.3.3 修改1.3.4 删除1.4 DDL语
2021-01-20 22:23:31 196
原创 机器学习算法(1)
目录机器学习模型简易算法实现1.KNN模型1.1KNN分类1.1.1导入数据集1.1.2简易算法实现1.1.3数据可视化与模型使用1.2KNN回归1.2.1算法简单实现1.2.2模型使用2.线性回归模型2.1多元线性回归2.1.1数据导入2.1.2 算法简单实现2.1.3模型使用与可视化2.1.4失效情况2.2标准化方法2.2.1 算法12.2.2使用2.2.3算法22.2.4 使用2.3 logistic 回归2.3.1算法实现2.3.2简单使用与可视化3.聚类算法3.1 Kmeans聚类3.1.1算法
2021-01-20 22:03:02 322
原创 数据挖掘第二课
数据挖掘第二课facebook案例导入数据1. 数据预处理 1.1 描述性统计 1.2 哑变量生成2. 数据可视化分析3.特征选择 3.1 相关系数 3.2 熵(基尼系数)的指标4.模型拟合 1.logistic回归 2
2020-06-03 16:22:47 753
翻译 3.3条件期望法
## 【例3.6】set.seed(1)n <- 1000Y <- rexp(n)X <- rnorm(n, Y, 2)n1 <- sum(X > 1)theta.e <- n1 / nI <- X > 1sigma2.e <- sum((I - theta.e) ^ 2) / (n * (n - 1))theta.esigma2.e# > theta.e# [1] 0.489# > sigma2.e# [1]..
2020-06-01 11:08:29 3314
翻译 3.2 控制变量法
## 【例3.4】varh <- -0.5 * ((exp(2) - 4 * exp(1) + 3))varf <- 1 / 12covhf <- 0.5 * (3 - exp(1))corhf2 <- (covhf ^ 2) / (varh * varf)cs <- -covhf / varfvaryc <- varh - covhf ^ 2 / varfcorhf <- covhf / sqrt(varh * varf)varhcovhf..
2020-06-01 11:04:35 2389
翻译 3.1对偶变量法
统计实验及R语言模拟\color{#0000FF}{统计实验及R语言模拟}统计实验及R语言模拟 第3章方差缩减方法\color{#0000FF}{ 第3章 方差缩减方法}第3章方差缩减方法代码如下:#——————————————————————————3.方差缩减方法——————————————————————###——————————————————————3.1对偶变量法—————————————————————————##### [例3.1]set.seed(1)n <- 10
2020-05-21 14:24:39 10914
原创 数据挖掘学习笔记
数据挖掘学习笔记 现有一组facebook数据,x1-x10为已知属性,y为要预测的变量,首先导包,和数据。import numpy as npimport pandas as pdfrom statsmodels.formula.api import olsimport statsmodels.api as sm## 导入数据train_facebook = pd.read_csv...
2020-05-02 16:08:08 346
3.方差缩减方法,控制变量法.R
2020-06-01
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人