Bzoj 2038 小Z的袜子
题目描述
作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……
具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。
你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子。当然,小Z希望这个概率尽量高,所以他可能会询问多个(L,R)以方便自己选择。
输入
输入文件第一行包含两个正整数N和M。N为袜子的数量,M为小Z所提的询问的数量。接下来一行包含N个正整数Ci,其中Ci表示第i只袜子的颜色,相同的颜色用相同的数字表示。再接下来M行,每行两个正整数L,R表示一个询问。
输出
包含M行,对于每个询问在一行中输出分数A/B表示从该询问的区间[L,R]中随机抽出两只袜子颜色相同的概率。若该概率为0则输出0/1,否则输出的A/B必须为最简分数。(详见样例)
solution
莫队入门模版题。
学了莫队算法以后想了很久为什么这个暴力能这么优美。
首先考虑离线操作
然后推公式。。。
根据题意得
ans=∑colori=1C2cnt[i]C2r−l+1 a n s = ∑ i = 1 c o l o r C c n t [ i ] 2 C r − l + 1 2
cnt表示第i种颜色在
[l,r]
[
l
,
r
]
的区间中出现了几次。
化简:
ans=∑colori=1cnt[i]∗(cnt[i]−1)2(r−l+1)∗(r−l)2 a n s = ∑ i = 1 c o l o r c n t [ i ] ∗ ( c n t [ i ] − 1 ) 2 ( r − l + 1 ) ∗ ( r − l ) 2
=∑colori=1cnt[i]2−cnt[i](r−l+1)∗(r−l) = ∑ i = 1 c o l o r c n t [ i ] 2 − c n t [ i ] ( r − l + 1 ) ∗ ( r − l )
=∑colori=1cnt[i]2−∑colori=1cnt[i](r−l+1)∗(r−l) = ∑ i = 1 c o l o r c n t [ i ] 2 − ∑ i = 1 c o l o r c n t [ i ] ( r − l + 1 ) ∗ ( r − l )
=∑colori=1cnt[i]2−(r−l+1)(r−l+1)∗(r−l) = ∑ i = 1 c o l o r c n t [ i ] 2 − ( r − l + 1 ) ( r − l + 1 ) ∗ ( r − l )
问题就转换成了维护一个区间内
cnt[i]
c
n
t
[
i
]
的平方和,现在假设我们已经知道了区间
[l,r]
[
l
,
r
]
的答案,那么我们就可以在
O(1)
O
(
1
)
的时间求出
[l+1,r],[l−1,r],[l,r−1]和[l,r+1]
[
l
+
1
,
r
]
,
[
l
−
1
,
r
]
,
[
l
,
r
−
1
]
和
[
l
,
r
+
1
]
的答案。
我们先考虑求
[l−1,r]
[
l
−
1
,
r
]
和
[l,r+1],
[
l
,
r
+
1
]
,
因为是新增加一个数,可以放在一起讨论。
先令
ret=∑colori=1cnt[i]2
r
e
t
=
∑
i
=
1
c
o
l
o
r
c
n
t
[
i
]
2
,当加进来一个数的时候
ret=ret−cnt[i]2+(cnt[i]+1])2
r
e
t
=
r
e
t
−
c
n
t
[
i
]
2
+
(
c
n
t
[
i
]
+
1
]
)
2
化简变成
ret+=2∗cnt[i]+1
r
e
t
+
=
2
∗
c
n
t
[
i
]
+
1
同理对于
[l+1,r]
[
l
+
1
,
r
]
和
[l,r−1]
[
l
,
r
−
1
]
,ret就变成了
ret−2∗cnt[i]+1
r
e
t
−
2
∗
c
n
t
[
i
]
+
1
.
接下来就是莫队的是实现,什么样的转移方式比较快?
我们考虑对每个查询的左端点分块,块内按照右端点排序。
这样在每块中间要
O(n)
O
(
n
)
跑一边右端点,
O(n‾√)
O
(
n
)
跑一边左端点,因为一共有
n‾√
n
块,所以时间复杂度为
O(nn‾√)
O
(
n
n
)
..
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxn 100010
typedef long long LL;
inline int read(){
int ret=0,ff=1;
char ch=getchar();
while(ch<'0'||ch>'9'){
if(ch=='-') ff=-ff;
ch=getchar();
}
while(ch>='0'&&ch<='9'){
ret=ret*10+ch-'0';
ch=getchar();
}
return ret*ff;
}
int pos[maxn],w[maxn],n,m;
LL cnt[maxn],ans=-1;//每次算的时候会多加上一个1,所以提前减去
struct X{
int l,r,id;
LL x,y;
}q[maxn];
struct cmp1{
bool operator()(const X& t1,const X& t2){
if(pos[t1.l]==pos[t2.l]) return t1.r<t2.r;
return t1.l<t2.l;
}
};
struct cmp2{
bool operator()(const X& t1,const X& t2){
return t1.id<t2.id;
}
};
LL gcd(LL a,LL b){return b?gcd(b,a%b):a;}
void update(int x,int f){
ans+=2ll*cnt[w[x]]*f+1;
cnt[w[x]]+=f;
}
void mo(){
int l=0,r=0;
for(int i=1;i<=m;++i){
while(r<q[i].r) update(++r,1);
while(r>q[i].r) update(r--,-1);
while(l>q[i].l) update(--l,1);
while(l<q[i].l) update(l++,-1);
if(ans==r-l+1){q[i].x=0,q[i].y=1;continue;}
q[i].x=ans-(r-l+1);
q[i].y=1ll*(r-l+1)*(r-l);
LL k=gcd(q[i].x,q[i].y);
q[i].x/=k,q[i].y/=k;
}
}
int main(){
n=read(),m=read();
for(int i=1;i<=n;++i) w[i]=read();
int blk=sqrt(n);
for(int i=1;i<=n;++i) pos[i]=(i-1)/blk+1;
for(int i=1;i<=m;++i) q[i].l=read(),q[i].r=read(),q[i].id=i;
sort(q+1,q+1+m,cmp1());
mo();
sort(q+1,q+1+m,cmp2());
for(int i=1;i<=m;++i) printf("%lld/%lld\n",q[i].x,q[i].y);
return 0;
}