BZOJ4698 Sdoi2008 Sandy的卡片

BZOJ4698 Sdoi2008 Sandy的卡片

题目描述

Sandy和Sue的热衷于收集干脆面中的卡片。然而,Sue收集卡片是因为卡片上漂亮的人物形象,而Sandy则是为了积
攒卡片兑换超炫的人物模型。每一张卡片都由一些数字进行标记,第i张卡片的序列长度为Mi,要想兑换人物模型
,首先必须要集够N张卡片,对于这N张卡片,如果他们都有一个相同的子串长度为k,则可以兑换一个等级为k的人
物模型。相同的定义为:两个子串长度相同且一个串的全部元素加上一个数就会变成另一个串。Sandy的卡片数远
远小于要求的N,于是Sue决定在Sandy的生日将自己的卡片送给Sandy,在Sue的帮助下,Sandy终于集够了N张卡片
,但是,Sandy并不清楚他可以兑换到哪个等级的人物模型,现在,请你帮助Sandy和Sue,看看他们最高能够得到
哪个等级的人物模型。

输入

第一行为一个数N,表示可以兑换人物模型最少需要的卡片数,即Sandy现在有的卡片数
第i+1行到第i+N行每行第一个数为第i张卡片序列的长度Mi,之后j+1到j+1+Mi个数,用空格分隔,分别表示序列中
的第j个数
n<=1000,M<=1000,2<=Mi<=101

输出

一个数k,表示可以获得的最高等级。
洛谷上也可以测bzoj是权限题


Solution

先冷静地把题解说完
首先很容易想到的就是做差分
然后对于每个差分数组求一下最长公共子串就好,注意最长公共子串最后要加1
最长公共子串可以用二分+后缀数组来解决
首先二分长度,然后放到height数组里面一组一组地判断
其实思路比较简单
可是我为什么调了一下午呢?
因为!memset!
数组尽量开大点这句话没有任何问题
可是一定要小心用memset!

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxn 1000010
int t1[maxn],t2[maxn],a[maxn];
int c[maxn],sa[maxn],pos[maxn];
int s[maxn],rak[maxn],height[maxn];
bool vis[1010];//就是这里!!!
int up=500000;
int n;
inline int read(){
    int ret=0,ff=1;
    char ch=getchar();
    while(ch<'0'||ch>'9'){
        if(ch=='-') ff=-ff;
        ch=getchar();
    }
    while(ch>='0'&&ch<='9'){
        ret=ret*10+ch-'0';
        ch=getchar();
    }
    return ret*ff;
}
void SA(){
    int *x=t1,*y=t2,m=1000000;
    for(int i=1;i<=m;++i) c[i]=0;
    for(int i=1;i<=n;++i) c[x[i]=s[i]]++;
    for(int i=1;i<=m;++i) c[i]+=c[i-1];
    for(int i=n;i;--i) sa[c[x[i]]--]=i;
    for(int k=1;k<=n;k<<=1){
        int p=0,j=2;
        for(int i=n-k+1;i<=n;++i) y[++p]=i;
        for(int i=1;i<=n;++i) if(sa[i]>k) y[++p]=sa[i]-k;
        for(int i=1;i<=m;++i) c[i]=0;
        for(int i=1;i<=n;++i) c[x[y[i]]]++;
        for(int i=1;i<=m;++i) c[i]+=c[i-1];
        for(int i=n;i;--i) sa[c[x[y[i]]]--]=y[i];
        for(swap(x,y),p=1,x[sa[1]]=1;j<=n;++j)
        x[sa[j]]=y[sa[j]]==y[sa[j-1]]&&y[sa[j]+k]==y[sa[j-1]+k]?p:++p;
        m=p;
        if(p>=n) break;
    }
    for(int i=1;i<=n;++i) rak[sa[i]]=i;
    int f=0;
    for(int i=1;i<=n;++i){
        int j=sa[rak[i]-1];
        if(f) --f;
        while(s[i+f]==s[j+f]) ++f;
        height[rak[i]]=f;
    }
}
int N;
bool ck(int x){
    int cnt=0;
    for(int i=1;i<=n;++i){
        if(height[i]<x) memset(vis,0,sizeof(vis)),cnt=0;//还有这里!memset一下就变成n^2了,最后T成小动物了
        else{
            if(!vis[pos[sa[i]]]) vis[pos[sa[i]]]=1,++cnt;
            if(!vis[pos[sa[i-1]]]) vis[pos[sa[i-1]]]=1,++cnt;
            if(cnt>=N)return 1;
        }
    }
    return 0;
}
int main(){
    freopen("bzoj4698.in","r",stdin);
    N=read();
    int top=0;
    for(int i=1;i<=N;++i){
        int x=read();
        for(int j=1;j<=x;++j){
            a[j]=read();
            if(j!=1)s[++top]=a[j]-a[j-1]+50000;
            pos[top]=i;
        }
        s[++top]=++up;
    }
    n=top;
    SA();
    int l=0,r=n;
    int ans;
    while(l<=r){
        int Mid=(l+r)>>1;
        if(ck(Mid)) l=Mid+1,ans=Mid;
        else r=Mid-1;
    }
    printf("%d\n",ans+1);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值