分治法、动态规划法、贪心法、回溯法、分支限界法的区别、联系以及适用情况

本文详细介绍了分治法、动态规划法、贪心法、回溯法和分支限界法的基本思想、差异以及各自适用的情况。分治法通过将问题分解成互不相交的子问题求解;动态规划法解决重叠子问题,避免重复计算;贪心法每次做出局部最优选择;回溯法则在搜索过程中通过回溯寻找所有可能解;分支限界法适用于最优化问题,通过限界函数调整搜索方向。
摘要由CSDN通过智能技术生成

一、算法思想

    (一)分治法(divide and conquer method)

    是将待求解的原问题划分成k个较小规模的子问题,对这k个子问题分别求解。如果子问题的规模仍然不够小,则再将每个子问题划分为k个规模更小的子问题,如此分解下去,直到问题规模足够小,很容易求出其解为止(子问题求解思路一致),再将子问题的解合并为一个更大规模的问题的解,自底向上逐步求出原问题的解。

    (二)动态规划法(dynamic programing method)

    是将待求解问题分解成若干个相互重叠的子问题,每个子问题对应决策过程的一个阶段,一般来说,子问题的重叠关系表现在对给定问题求解的递推关系(也就是动态规划函数)中,将子问题的解求解一次并填入表中,当需要再次求解此子问题时,可以通过查表获得该子问题的解而不用再次求解,从而避免了大量重复计算。

    (三)贪心法(greedy method)

    贪心法在解决问题的策略上目光短浅,只根据当前已有的信息就做出选择,而且一旦做出了选择,不管将来有什么结果,这个选择都不会改变。换言之,贪心法并不是从整体最优考虑,它所做出的选择只是在某种意义上的局部最优。这种局部最优选择并不总能获得整体最优解(Optimal Solution),但通常能获得近似最优解(Near-Optimal Solution)。

    (四)回溯法(back track method)

1. 递归与分治 递归与分治是一种常用的算设计思想,主要应用于解决一些具有递归结构的问题,如汉诺塔、斐波那契数列等。它的基本思想是将原问题分解成若干个子问题,递归地解决这些子问题,最后将子问题的结果合并成原问题的解。 2. 动态规划 动态规划是一种常用的算设计思想,主要应用于求解具有最优子结构性质的问题,如背包问题、最长公共子序列问题等。它的基本思想是将问题分解成若干个子问题,并且递归地求解子问题,最后将子问题的解合并成原问题的解。动态规划具有子问题重叠和最优子结构的特点,因此可以通过记忆化搜索或者自底向上的方式求解。 3. 贪心策略 贪心策略是一种常用的算设计思想,主要应用于求解具有贪心选择性质的问题,如霍夫曼编码、最小生成树问题等。它的基本思想是每次选择当前最优的选择,然后将问题规模缩小,重复这个过程直到问题得到解决。贪心策略的正确性通常需要提供一些证明,但是在实际应用中,它往往可以提供有效的解决方案。 4. 回溯法 回溯法是一种常用的算设计思想,主要应用于求解具有多种选择性质的问题,如八皇后问题、0/1背包问题等。它的基本思想是从问题的某一种状态开始,逐步地搜索所有可能的解,直到找到满足条件的解为止。在搜索过程中,如果发现当前路径不能得到解,就回溯到上一个状态,尝试其他的选择。 5. 分支限界法 分支限界法是一种常用的算设计思想,主要应用于求解具有多种选择性质的问题,如旅行商问题、图着色问题等。它的基本思想是将问题空间分解成若干个子空间,并通过某种方式对子空间进行排序,然后按照顺序逐个扩展子空间,直到找到满足条件的解为止。在搜索过程中,如果发现某个子空间一定不能得到解,就将其剪枝掉,以减少搜索的时间和空间复杂度。 6. 随机化算 随机化算是一种常用的算设计思想,主要应用于求解一些难以确定最优解的问题,如图最小割问题、模拟退火算等。它的基本思想是将问题转换成一个随机过程,并利用随机化的方来搜索可能的解。随机化算通常可以提供近似解或者概率上的正确性保证,但是需要注意的是,它的效率和正确性可能受到随机数生成器的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>