题目描述
输入两个字符串 S 和 L ,都只包含英文小写字母。S长度 ≤ 100,L长度 ≤ 500,000。判定S是否是L的有效子串。
判定规则:S 中的每个字符在 L 中都能找到(可以不连续),且 S 在L中字符的前后顺序与 S 中顺序要保持一致。(例如,S = ”ace” 是 L= ”abcde” 的一个子序列且有效字符是a、c、e,而”aec”不是有效子序列,且有效字符只有a、e)
输入描述
输入两个字符串 S 和 L,都只包含英文小写字母。S长度 ≤ 100,L长度 ≤ 500,000。
先输入S,再输入L,每个字符串占一行。
输出描述
S 串最后一个有效字符在 L 中的位置。(首位从0开始计算,无有效字符返回-1)
用例
输入 | ace |
输出 | 4 |
说明 | 无 |
输入 | fgh |
输出 | -1 |
说明 | 无 |
子序列判定与末位字符查找的解题思路
问题分析
给定两个字符串S和L,判断S是否是L的子序列,并返回S的最后一个字符在L中的位置。子序列的定义是S中每个字符在L中按顺序出现(可间隔),但必须保持原有顺序。
示例说明
输入:
S = “ace”
L = “abcde”
输出:4(e在L的第4位)
核心解题思路
逻辑分解
- 顺序匹配:逐个字符检查S中的字符是否按顺序出现在L中。
- 动态搜索起点:每次匹配成功后,更新下一次查找的起始位置,确保顺序性。
- 末位记录:始终记录最后一个成功匹配的位置,作为候选结果。
关键步骤
- 初始化指针:维护一个指针
start
,表示当前在L中搜索的起始位置。 - 遍历S的字符:对每个字符c∈S,在L的
start
位置之后查找第一次出现的位置。 - 更新状态:
- 找到则更新
start
为当前位置+1,以便下一个字符搜索。 - 未找到则立即判定无效,返回-1。
- 找到则更新
- 保存末位:每次成功匹配时记录当前字符的位置,最终结果即为最后一个有效位置。
代码实现
S = input().strip()
L = input().strip()
start = 0 # 当前搜索起始位置
last_position = -1 # 记录最后一个有效字符的位置
for c in S:
# 在L的[start:]范围内查找字符c
pos = L.find(c, start)
if pos == -1:
print(-1)
exit()
last_position = pos # 更新最后位置
start = pos + 1 # 下次搜索从pos的后一位开始
print(last_position)
复杂度分析
- 时间复杂度:O(len(S) + len(L))。
每个字符查找操作平均只需线性扫描L的剩余部分,总体效率较高。 - 空间复杂度:O(1)。
仅需常数级别的额外空间。
示例推演
案例1:正常匹配
输入:
S=“ace”,L=“abcde”
执行流程:
- 查找a → pos=0 → start=1,last=0。
- 查找c → pos=2 → start=3,last=2。
- 查找e → pos=4 → start=5,last=4。
输出:4。
案例2:中途失败
输入:
S=“aec”,L=“abcde”
执行流程:
- 查找a → pos=0 → start=1,last=0。
- 查找e → pos=4 → start=5,last=4。
- 查找c → 在位置5之后无c → 返回-1。
边界条件处理
- S为空字符串:题目未说明,但按逻辑应返回-1。
- L比S短:直接无法匹配,返回-1。
- 重复字符处理:例如S=“aaa”,L=“ababa” → 正确匹配位置0、2、4。
总结
通过逐字符顺序查找并动态更新搜索区间,该方法以简洁的逻辑实现了子序列的有效性判定与末位定位。代码易于理解且效率优异,非常适合处理大规模字符串输入。