文章目录
前言
本文 主要介绍一下5G物理层信道相关的内容,以协议38.901为基础,讨论信道建模相关的问题。
一、坐标系转换
Fig1. GCS坐标示意图
全局坐标系统(GCS)是为系统中存在多个基站和用户终端的场景定义的。单个基站或者终端的天线阵列可以定义在局部坐标系(LCS)中。天线阵列矢量是定义在LCS上的,而LCS与GCS之间的转换取决于角度,其中
称为象限角(z轴固定,x轴转动的角度),
称为下倾角(y轴固定,z轴转动的角度),
称为倾斜角(x轴固定,y轴转动的角度)。转动的时候是先固定z轴,然后固定y轴,然后固定x轴。
Fig2. GCS到LCS坐标旋转示意图
上图中灰色线条坐标表示GCS的位置,而蓝色线条坐标表示LCS的位置。
1.笛卡尔坐标系
由GCS到LCS的旋转,使用矩阵表示定义如下:
以上式子有个特点,矩阵中角度是相对于哪个轴的,哪个轴对应的正余弦符号都是正的,并且在该轴对应行列的交点处的系数是求角度的余弦。另外一个随动轴上系数,余弦是正号,正弦是负号,也是在随动轴对应行列的交点处求角度的余弦。以下以z轴不动x轴转动角度为例做说明。如下图:
Fig3. GCS到LCS旋转矩阵规律示意图
上图中黑线圈出的部分对应x轴对应的行和列,橙色圈出的部分为随动轴y轴对应的行和列,而z轴不同,所以矩阵中只在交点出为1,其他位置为0。
由于R矩阵是正交矩阵,R的逆等于R矩阵的转置。矩阵展开写,得到R矩阵的公式如下:
注意,R矩阵是从GCS到LCS的转换矩阵,若需要从LCS转换到GCS,则应该用R的逆矩阵。另外要右乘R,那么[x y z]应该是行向量的形式。
2.极坐标系
极坐标与笛卡尔坐标系转换服从下式:
若表示GCS的角度,那么要得到LCS对应的角度
,可通过
公式来计算。注意到由于这里[x y z]变成了列向量,因此转换矩阵变成了用R的转置(即R的逆)左乘。
上式中通过与[0 0 1]的转置相乘求得LCS对应的z坐标,再求acos,即可得到角度
。
上式中通过与[1 j 0]的转置相乘求得LCS对应的x+jy坐标,再求角度,即可得到角度
。
二、极化场分量
1.一般场景
GCS的