无线信道

文章目录

前言

一、坐标系转换

1.笛卡尔坐标系

2.极坐标系

二、极化场分量

1.一般场景

2.下倾角场景

二、天线阵列建模

三、快速衰落信号

1.CDL-C信道

2.信道系数计算

总结


前言

本文 主要介绍一下5G物理层信道相关的内容,以协议38.901为基础,讨论信道建模相关的问题。

 

一、坐标系转换

                                                 Fig1. GCS坐标示意图 

    全局坐标系统(GCS)是为系统中存在多个基站和用户终端的场景定义的。单个基站或者终端的天线阵列可以定义在局部坐标系(LCS)中。天线阵列矢量是定义在LCS上的,而LCS与GCS之间的转换取决于角度\alpha ,\beta ,\gamma,其中\alpha称为象限角(z轴固定,x轴转动的角度),\beta称为下倾角(y轴固定,z轴转动的角度),\gamma称为倾斜角(x轴固定,y轴转动的角度)。转动的时候是先固定z轴,然后固定y轴,然后固定x轴。

                                                                                                Fig2. GCS到LCS坐标旋转示意图

上图中灰色线条坐标表示GCS的位置,而蓝色线条坐标表示LCS的位置。

1.笛卡尔坐标系

由GCS到LCS的旋转,使用矩阵表示定义如下:

以上式子有个特点,矩阵中角度是相对于哪个轴的,哪个轴对应的正余弦符号都是正的,并且在该轴对应行列的交点处的系数是求角度的余弦。另外一个随动轴上系数,余弦是正号,正弦是负号,也是在随动轴对应行列的交点处求角度的余弦。以下以z轴不动x轴转动\alpha角度为例做说明。如下图:

Fig3. GCS到LCS旋转矩阵规律示意图

上图中黑线圈出的部分对应x轴对应的行和列,橙色圈出的部分为随动轴y轴对应的行和列,而z轴不同,所以矩阵中只在交点出为1,其他位置为0。

由于R矩阵是正交矩阵,R的逆等于R矩阵的转置。R^{-1}=R^{_X}(-\gamma )R^{_Y}(-\beta )R^{_Z}(-\alpha)=R^{T}矩阵展开写,得到R矩阵的公式如下:

注意,R矩阵是从GCS到LCS的转换矩阵,若需要从LCS转换到GCS,则应该用R的逆矩阵。另外要右乘R,那么[x y z]应该是行向量的形式。

2.极坐标系

极坐标与笛卡尔坐标系转换服从下式:

\theta,\phi表示GCS的角度,那么要得到LCS对应的角度\theta ^{'},\phi ^{'},可通过R^{-1}\hat{\rho }公式来计算。注意到由于这里[x y z]变成了列向量,因此转换矩阵变成了用R的转置(即R的逆)左乘。

 上式中通过R^{-1}\hat{\rho }与[0 0 1]的转置相乘求得LCS对应的z坐标,再求acos,即可得到角度\theta ^{'}

 上式中通过R^{-1}\hat{\rho }与[1 j 0]的转置相乘求得LCS对应的x+jy坐标,再求角度,即可得到角度\phi ^{'}

二、极化场分量

1.一般场景

GCS的

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

woniukiky

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值