查找最小的k 个元素

排序


一、题目:(感谢 http://blog.csdn.net/v_JULY_v 提供的题目)

查找最小的k 个元素

输入n 个整数,输出其中最小的k 个。
例如输入1,2,3,4,5,6,7 和8 这8 个数字,则最小的4 个数字为1,2,3 和4。


 二、分析:

看到题目的第一个想法,先把输入的n个整数排序,再输出最小的k个元素。

下面比较每种排序方案,选择最优方案解决这个问题!


三、排序:

排序算法中时间开销是衡量其好坏的重要标志!

基本操作:比较、移动

提高效率:尽可能少的比较次数和移动次数


1.插入排序:

(1)插入排序(insertion sort)

        把元素分为待排序序列和已排序序列(初始时把第一位元素默认为已排序序列),依次将待排序序列的每一个元素插入到已排序序列中,直到全部元素都插入到已排序序列。


算法描述

  1. 从第一个元素开始,该元素可以认为已经被排序
  2. 取出下一个元素,在已经排序的元素序列中从后向前扫描
  3. 如果该元素(已排序)大于新元素,将该元素移到下一位置
  4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
  5. 将新元素插入到该位置后
  6. 重复步骤2~5

如果比较操作的代价比交换操作大的话,可以采用二分查找法来减少比较操作,称为二分查找排序


(2)希尔排序(shell sort)

        将所有元素分割成若干个子序列,在子序列中进行排序,重复以上操作,待所有元素基本有序时,进行一次插入排序。


过程实例

例如,假设有这样一组数[ 13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10 ],如果我们以步长为5开始进行排序,我们可以通过将这列表放在有5列的表中来更好地描述算法,这样他们就应该看起来是这样:

13 14 94 33 82
25 59 94 65 23
45 27 73 25 39
10

然后我们对每列进行排序:

10 14 73 25 23
13 27 94 33 39
25 59 94 65 82
45

当我们以单行来读取数据时我们得到:[ 10 14 73 25 23 13 27 94 33 39 25 59 94 65 82 45 ].这时10已经移至正确位置了,然后再以3为步长进行排序:

10 14 73
25 23 13
27 94 33
39 25 59
94 65 82
45

排序之后变为:

10 14 13
25 23 33
27 25 59
39 65 73
45 94 82
94

最后以1步长进行排序(此时就是简单的插入排序了)。


图解

Step-by-step visualisation of Shellsort


2.交换排序:

(1)冒泡排序(bubble sort)

        两两比较相邻的元素,大的往后移,小的往前移,直到排序完成。


算法描述

  1. 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
  2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
  3. 针对所有的元素重复以上的步骤,除了最后一个。
  4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

图解

使用冒泡排序为一列数字进行排序的过程


(2)快速排序(quick sort)

        选一个轴值(基准),把比轴值小的值移到其左侧,把比轴值大的值移到其右侧,然后对左侧和右侧的元素重复上述的过程,直到整个序列有序。快速排序是一个递归的过程。


算法描述

  1. 从数列中挑出一个元素,称为 "基准"(pivot),
  2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
  3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

图解

使用快速排序法对一列数字进行排序的过程


3.选择排序:

(1)选择排序(selection sort)

        首先在未排序序列中找到最小元素,存放到已排序序列的起始位置,再从剩余未排序元素中继续寻找最小元素,然后放到已排序序列末尾。以此类推,直到所有元素均排序完毕。


图解

选择排序动画演示


(2)堆排序(heap sort)

        先把待排序序列构造成,选出堆中最大(小)的元素从堆中移走,再把剩余元素调整为堆,以此类推,直到堆中只剩一个元素。

(堆——具有以下特性的完全二叉树:每个结点的值都大(小)于或等于其左右孩子结点的值,大(小)根堆。

  • 父节点i的左子节点在位置 (2*i);
  • 父节点i的右子节点在位置 (2*i+1);
  • 子节点i的父节点在位置 floor(i/2);

(完全二叉树——具有以下特点:

  • 叶子结点只会出现在最下两层,且最下层的叶子结点都集中在二叉树的左部;
  • 完全二叉树中如果有度为1的结点,只可能有一个,且该结点只有左孩子


图解

堆排序算法的演示。首先,将元素进行重排,以符合堆的条件。图中排序过程之前简单的绘出了堆树的结构。


4.归并排序:

(1)归并排序(merge sort)

        将若干个有序序列逐步归并,最终归并为一个有序序列。(归并——将两个或两个以上的有序序列合并为一个有序序列的过程。)


算法描述

  1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
  2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置
  3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
  4. 重复步骤3直到某一指针达到序列尾
  5. 将另一序列剩下的所有元素直接复制到合并序列尾

图解

Example of merge sort sorting a list of random dots.



各种排序方法的比较:


针对本题我认为选择排序比较适合~


四、代码:


#include<iostream>
using namespace std;

const int n = 10;
const int k = 4;

void main()
{
	int intArray[n] = {10,20,5,2,36,4,9,8,58,40};
	int index = 0;
	int min = 0;
	int temp = 0;

	for(int i=0;i<k;i++)
	{
		index = i;
		min = intArray[i];
		for(int j=i+1;j<n;j++)
		{
			if(intArray[j] < min)
			{
				min = intArray[j];
				index = j;
			}
		}
		temp = intArray[i];
		intArray[i] = intArray[index];
		intArray[index] = temp;
	}

	for(int i=0;i<k;i++)
	{
		cout<<intArray[i]<<" ";
	}
}

结果截图:


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值