后缀表达式求值

求值的过程即手算的过程。
逐字符扫描表达式,遇到运算数将其入栈,遇到运算符时就作用于从栈中弹出的两个操作数再并将结果入栈。扫描完整个表达式时,栈中的数即为表达式的结果。

package stack;
import java.util.Stack;

/**
 * 后缀表达式求值
 */
public class Stack01 {
    public static int start = 0;
    public static void calc(String s) {
        Stack stack = new Stack();
        String token;
        while ((token = getToken(s)) != null) {
            int res=0;
            try {
                //运算数
                res = Integer.parseInt(token);
            } catch (NumberFormatException e) {
                //运算符
                int num2 = (int)stack.pop();
                int num1 = (int)stack.pop();
                res = op(num1,num2,token);
            } finally {
                stack.push(res);
            }
        }
        System.out.println(stack.peek());

    }

    private static int op(int num1, int num2, String oprand) {
        int res;
        switch (oprand) {
            case "+":
                res = num1 + num2;
                break;
            case "-":
                res = num1 - num2;
                break;
            case "*":
                res = num1 * num2;
                break;
            case "/":
                res = num1 / num2;
                break;
            default:
                res = 0;
        }
        return res;
    }

    private static String getToken(String s) {
        int len = s.length();
        if (start == len) {
            return null;
        }
        if (start == len-1) {
            int temp = start;
            start++;
            return s.substring(temp);
        }
        int end = start;
        char ch = s.charAt(end);
        while (ch != ' ') {
            end++;
            ch = s.charAt(end);
        }
        String token = s.substring(start, end);
        start = end + 1;
        return token;
    }

    public static void main(String[] args) {
        calc("10 10 + 2 *");
        System.out.println();
    }

}
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值