自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1)
  • 资源 (13)
  • 论坛 (8)
  • 收藏
  • 关注

原创 用 VB 实现表单的自动提交

【序】    以摩托罗拉的九月大奖赛为例,下面介绍用 VB 实现带校验码的网页表单的自动提交。我们现看看摩托罗拉的投票页面:http://www.motorola.com.cn/news/925/photo.asp?id={525147E1-C4A7-41EE-9190-95800AC81E29}    如果要对用户投票的话就必须先填写验证码!由于验证码是图片,而且是随即的,所以对自动提交

2003-09-10 11:32:00 1361

大数据技术原理与应用:概念、存储、处理、分析与应用 完整高清PDF

大数据技术原理与应用:概念、存储、处理、分析与应用 完整高清PDF

2019-06-12

{SmartAssembly} 6.6.3.44 截止目前最新版本含注册机绿色版

{SmartAssembly} 6.6.3.44 截止目前最新版本含注册机绿色版 操作方式:注册机生成序列号 断网注册,提示无法联网,产生注册信息,复制到注册机,自动生成注册结果,复制到软件,注册成功

2012-04-06

日本语文法

日本语文法,总结得非常详细。

2021-04-11

AnkhSvn2.7最新版本,通吃所有版本vs

AnkhSvn2.7最新版本,通吃所有版本vs,包括 vs2005/2010/2012/2013/2015/2017,最新版本

2018-12-28

ECMAScript 2018快速入门 高清完整PDF

ECMAScript 2018快速入门 作者:黄灯桥   定价:29元   印次:1-1   ISBN:9787302516811   出版日期:2019.01.01   印刷日期:2018.11.28 本书分为13章,较为系统地介绍ECMAScript语言,内容包括变量与常量、表达式和运算符、字符串、数字和符号、数组和类型化数组、对象、函数、集合和映射、迭代器和生成器、Promise对象与异步函数、代理、类和模块,最后引导读者自己动手写一个JS框架。 [1] 目录 第1章变量与常量 1 1.1var的问题 1 1.2let语句 2 1.3使用let的好处 2 1.3.1避免重复声明 2 1

2019-06-12

SmartAssembly 6.1.048 破解

SmartAssembly 6.1.048 目前最新的版本 已经破解

2011-05-30

最好的免费的豆丁批量上传工具

最好的免费的豆丁批量上传工具 功能相当强

2010-08-12

freeRes破解版

freeRes破解版

2008-05-03

大数据技术体系详解:原理、架构与实践 高清版 PDF

大数据技术体系详解:原理、架构与实践 董西成(著) 机械工业出版社 高清版

2019-06-12

文档批量下载工具《老牛下书》最新版

文档批量下载工具《老牛下书》最新版 全自动搜索并下载文档

2010-08-12

重新整理更新最新免费手机号归属地数据(三万多条)含最新号段

重新整理更新最新免费手机号归属地数据(三万多条)含最新号段 截止到2017年最新数据,直接可以使用

2017-11-30

大数据架构详解:从数据获取到深度学习 完整高清PDF

内容提要 本书从架构、业务、技术三个维度深入浅出地介绍了大数据处理领域端到端的知识。主要内容包括三部分:部分从数据的产生、采集、计算、存储、消费端到端的角度介绍大数据技术的起源、发展、关键技术点和未来趋势,结合生动的业界新产品,以及学术界新的研究方向和成果,让深奥的技术浅显易懂;第二部分从业务和技术角度介绍实际案例,让读者理解大数据的用途及技术的本质;第三部分介绍大数据技术不是孤立的,讲解如何与前沿的云技术、深度学习、机器学习等相结合。 目录 部分 大数据的本质 章 大数据是什么 2 1.1 大数据导论 2 1.1.1 大数据简史 2 1.1.2 大数据现状 3 1.1.3 大数据与BI 3 1.2 企业数据资产 4 1.3 大数据挑战 5 1.3.1 成本挑战 6 1.3.2 实时性挑战 6 1.3.3 安全挑战 6 1.4 小结 6 第2章 运营商大数据架构 7 2.1 架构驱动的因素 7 2.2 大数据平台架构 7 2.3 平台发展趋势 8 2.4 小结 8 第3章 运营商大数据业务 9 3.1 运营商常见的大数据业务 9 3.1.1 SQM(运维质量管理) 9 3.1.2 CSE(客户体验提升) 9 3.1.3 MSS(市场运维支撑) 10 3.1.4 DMP(数据管理平台) 10 3.2 小结 11 第二部分 大数据技术 第4章 数据获取 14 4.1 数据分类 14 4.2 数据获取组件 14 4.3 探针 15 4.3.1 探针原理 15 4.3.2 探针的关键能力 16 4.4 网页采集 26 4.4.1 网络爬虫 26 4.4.2 简单爬虫Python代码示例 32 4.5 日志收集 33 4.5.1 Flume 33 4.5.2 其他日志收集组件 47 4.6 数据分发中间件 47 4.6.1 数据分发中间件的作用 47 4.6.2 Kafka架构和原理 47 4.7 小结 82 第5章 流处理 83 5.1 算子 83 5.2 流的概念 83 5.3 流的应用场景 84 5.3.1 金融领域 84 5.3.2 电信领域 85 5.4 业界两种典型的流引擎 85 5.4.1 Storm 85 5.4.2 Spark Streaming 89 5.4.3 融合框架 102 5.5 CEP 108 5.5.1 CEP是什么 108 5.5.2 CEP的架构 109 5.5.3 Esper 110 5.6 实时结合机器学习 110 5.6.1 Eagle的特点 111 5.6.2 Eagle概览 111 5.7 小结 116 第6章 交互式分析 117 6.1 交互式分析的概念 117 6.2 MPP DB技术 118 6.2.1 MPP的概念 118 6.2.2 典型的MPP数据库 121 6.2.3 MPP DB调优实战 131 6.2.4 MPP DB适用场景 162 6.3 SQL oHadoop 163 6.3.1 Hive 163 6.3.2 Phoenix 165 6.3.3 Impala 166 6.4 大数据仓库 167 6.4.1 数据仓库的概念 167 6.4.2 OLTP/OLAP对比 168 6.4.3 大数据场景下的同与不同 168 6.4.4 查询引擎 169 6.4.5 存储引擎 170 6.5 小结 171 第7章 批处理技术 172 7.1 批处理技术的概念 172 7.2 MPP DB技术 172 7.3 MapReduce编程框架 173 7.3.1 MapReduce起源 173 7.3.2 MapReduce原理 173 7.3.3 Shuffle 174 7.3.4 性能差的主要原因 177 7.4 Spark架构和原理 177 7.4.1 Spark的起源和特点 177 7.4.2 Spark的核心概念 178 7.5 BSP框架 217 7.5.1 什么是BSP模型 217 7.5.2 并行模型介绍 218 7.5.3 BSP模型基本原理 220 7.5.4 BSP模型的特点 222 7.5.5 BSP模型的评价 222 7.5.6 BSP与MapReduce对比 222 7.5.7 BSP模型的实现 223 7.5.8 Apache Hama简介 223 7.6 批处理关键技术 227 7.6.1 CodeGe227 7.6.2 CPU亲和技术 228 7.7 小结 229 第8章 机器学习和数据挖掘 230 8.1 机器学习和数据挖掘的联系与区别 230 8.2 典型的数据挖掘和机器学习过程 231 8.3 机器学习概览 232 8.3.1 学习方式 232 8.3.2 算法类似性 233 8.4 机器学习&数据挖掘应用案例 235 8.4.1 尿布和啤酒的故事 235 8.4.2 决策树用于电信领域故障快速定位 236 8.4.3 图像识别领域 236 8.4.4 自然语言识别 238 8.5 交互式分析 239 8.6 深度学习 240 8.6.1 深度学习概述 240 8.6.2 机器学习的背景 241 8.6.3 人脑视觉机理 242 8.6.4 关于特征 244 8.6.5 需要有多少个特征 245 8.6.6 深度学习的基本思想 246 8.6.7 浅层学习和深度学习 246 8.6.8 深度学习与神经网络 247 8.6.9 深度学习的训练过程 248 8.6.10 深度学习的框架 248 8.6.11 深度学习与GPU 255 8.6.12 深度学习小结与展望 256 8.7 小结 257 第9章 资源管理 258 9.1 资源管理的基本概念 258 9.1.1 资源调度的目标和价值 258 9.1.2 资源调度的使用限制及难点 258 9.2 Hadoop领域的资源调度框架 259 9.2.1 YARN 259 9.2.2 Borg 260 9.2.3 Omega 262 9.2.4 本节小结 263 9.3 资源分配算法 263 9.3.1 算法的作用 263 9.3.2 几种调度算法分析 263 9.4 数据中心统一资源调度 271 9.4.1 Mesos+Marathon架构和原理 271 9.4.2 Mesos+Marathon小结 283 9.5 多租户技术 284 9.5.1 多租户概念 284 9.5.2 多租户方案 284 9.6 基于应用描述的智能调度 287 9.7 Apache Mesos架构和原理 288 9.7.1 Apache Mesos背景 288 9.7.2 Apache Mesos总体架构 288 9.7.3 Apache Mesos工作原理 290 9.7.4 Apache Mesos关键技术 295 9.7.5 Mesos与YARN比较 304 9.8 小结 305 0章 存储是基础 306 10.1 分久必合,合久必分 306 10.2 存储硬件的发展 306 10.2.1 机械硬盘的工作原理 306 10.2.2 SSD的原理 307 10.2.3 3DXPoint 309 10.2.4 硬件发展小结 309 10.3 存储关键指标 309 10.4 RAID技术 309 10.5 存储接口 310 10.5.1 文件接口 311 10.5.2 裸设备 311 10.5.3 对象接口 312 10.5.4 块接口 316 10.5.5 融合是趋势 328 10.6 存储加速技术 328 10.6.1 数据组织技术 328 10.6.2 缓存技术 335 10.7 小结 336 1章 大数据云化 337 11.1 云计算定义 337 11.2 应用上云 337 11.2.1 Cloud Native概念 338 11.2.2 微服务架构 338 11.2.3 Docker配合微服务架构 342 11.2.4 应用上云小结 348 11.3 大数据上云 348 11.3.1 大数据云服务的两种模式 348 11.3.2 集群模式AWSEMR 349 11.3.3 服务模式Azure Data Lake Analytics 352 11.4 小结 354 第三部分 大数据文化 2章 大数据技术开化 356 12.1 开源文化 356 12.2 DevOps理念 356 12.2.1 Development和Operations的组合 357 12.2.2 对应用程序发布的影响 357 12.2.3 遇到的问题 358 12.2.4 协调人 358 12.2.5 成功的关键 359 12.3 速度远比你想的重要 359 12.4 小结 361 作者介绍 朱洁,2008年加入华为,具有8年大数据研发管理经验,现任华为大数据服务首席规划师。专注于大数据服务平台建设、规划和实践应用,同时参与多项企业级大数据项目解决方案的规划、设计和实施工作,在深化大数据行业落地方面有诸多实践经验,对解读大数据垂直行业的技术创新与开发有诸多独到的见解和心得。 n n 罗华霖,2002年加入华为,华为大数据首席规划师,主导完成华为大数据平台DataSight和华为电信大数据解决方案SmartCare技术规划和架构设计,支持电信运营商数字化战略转型,完成浙江移动、上海联通、沙特STC等200+电信大数据解决方案项目落地。曾任华为软交换首席设计师,华为大型电信大数据解决方案SmartCare首席架构师。

2019-06-12

Vss2005 入门与进阶

Vss2005 入门与进阶<br>VSS2005 操作详解

2008-06-12

IIS后台多任务线程限制

发表于 2014-06-29 最后回复 2016-09-26

真金白银赞助wp8开发者

发表于 2014-07-01 最后回复 2014-07-15

IIS后台多任务线程有限制吗?

发表于 2014-06-29 最后回复 2014-07-07

自绘图形和直接加载图片哪个性能更好?

发表于 2012-10-15 最后回复 2012-10-15

一个相当迷惑的问题:shared,Cache,Application关系如何暧昧的?

发表于 2011-03-18 最后回复 2011-03-18

VB.net 中如何调用 数据库 连接属性 对话框

发表于 2007-11-14 最后回复 2007-12-10

直接使用New Thread 和 ThreadStart的区别

发表于 2007-08-16 最后回复 2007-08-16

用 VB 实现表单的自动提交

发表于 2003-09-04 最后回复 2003-09-04

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除