使用Python进行逻辑回归和决策树分类分析
在今天的数字化世界中,数据分析和机器学习模型在解决复杂问题方面扮演着至关重要的角色。在本文中,我们将通过一个实际的案例来学习如何使用Python中的`pandas`和`sklearn`库来分析衣服尺码数据,并使用逻辑回归和决策树分类模型来预测衣服的尺码。
数据准备
首先,我们需要读取和准备我们的数据集。我们将使用`pandas`库来读取一个包含衣服尺码数据的CSV文件。这个数据集包含了身高、体重和对应的衣服尺码。
下面是代码展示
import pandas as pd
from sklearn.linear_model import LogisticRegression # 逻辑回归模型的类
读取数据集
下面是代码展示
df = pd.read_csv(r'../dataset/衣服尺码数据.csv', encoding='gbk')
图片展示:
接下来,我们将检查数据集中是否存在缺失值,并对缺失值进行处理。数据清洗是机器学习项目中非常重要的一步,因为缺失值可能会影响模型的性能。
检查缺失值
下面是代码展示
# 缺失值
df.isnull().sum()