51nod_1264_线段相交

51nod_1264_线段相交

判断两线段是否相交

题目描述
	给出平面上两条线段的两个端点,判断这两条线段是否相交(有一个公共点或有部分重合认为相交)。 如果相交,输出"Yes",否则输出"No"。
Input
	第1行:一个数T,表示输入的测试数量(1 <= T <= 1000)
	第2 - T + 1行:每行8个数,x1,y1,x2,y2,x3,y3,x4,y4。(-10^8 <= xi, yi <= 10^8)
	(直线1的两个端点为x1,y1 | x2, y2,直线2的两个端点为x3,y3 | x4, y4)
Output
	输出共T行,如果相交输出"Yes",否则输出"No"。
Input示例
	2
	1 2 2 1 0 0 2 2
	-1 1 1 1 0 0 1 -1
Output示例
	Yes
	No
解题思路
	利用向量叉乘有方向的性质判断线段的两个端点和另一个线段的关系

ACM算法_判断两线段相交

AC代码
#include<iostream>
#include<algorithm>
using namespace std;
struct Point {//点
	double x, y;
	Point() {}
	Point(int a, int b) {
		x = a;
		y = b;
	}
};
struct Line {//线段
	Point a, b;
	Line() {}
	Line(Point x, Point y) {
		a = x;
		b = y;
	}
};
bool judge(Point &a, Point &b, Point &c, Point &d)
{
	if (!(min(a.x, b.x) <= max(c.x, d.x) && min(c.y, d.y) <= max(a.y, b.y) && min(c.x, d.x) <= max(a.x, b.x) && min(a.y, b.y) <= max(c.y, d.y)))
		return false;
	double u, v, w, z;//分别记录两个向量
	u = (c.x - a.x)*(b.y - a.y) - (b.x - a.x)*(c.y - a.y);
	v = (d.x - a.x)*(b.y - a.y) - (b.x - a.x)*(d.y - a.y);
	w = (a.x - c.x)*(d.y - c.y) - (d.x - c.x)*(a.y - c.y);
	z = (b.x - c.x)*(d.y - c.y) - (d.x - c.x)*(b.y - c.y);
	return (u*v <= 0.00000001 && w*z <= 0.00000001);
}

int main() {
	int t;
	cin >> t;
	while (t--) {
		Point p1, p2, p3, p4;
		cin >> p1.x >> p1.y >> p2.x >> p2.y >> p3.x >> p3.y >> p4.x >> p4.y;
		if (judge(p1, p2, p3, p4)) {
			cout << "Yes\n";
		}
		else
			cout << "No\n";
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值