Dijkstra算法(单源最短路径)
单源最短路径问题,即在图中求出给定顶点到其它任一顶点的最短路径。在弄清楚如何求算单源最短路径问题之前,必须弄清楚最短路径的最优子结构性质。
一.最短路径的最优子结构性质
该性质描述为:如果P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么P(k,s)必定是从k到s的最短路径。下面证明该性质的正确性。
假设P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P(s,j)。而P(k,s)不是从k到s的最短距离,那么必定存在另一条从k到s的最短路径P'(k,s),那么P'(i,j)=P(i,k)+P'(k,s)+P(s,j)<P(i,j)。则与P(i,j)是从i到j的最短路径相矛盾。因此该性质得证。
二.Dijkstra算法
由上述性质可知,如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点。那么(Vi...Vk)也必定是从i到k的最短路径。为了求出最短路径,Dijkstra就提出了以最短路径长度递增,逐次生成最短路径的算法。譬如对于源顶点V0,首先选择其直接相邻的顶点中长度最短的顶点Vi,那么当前已知可得从V0到达Vj顶点的最短距离dist[j]=min{dist[j],dist[i]+matrix[i][j]}。根据这种思路,
假设存在G=<V,E>,源顶点为V0,U={V0},dist[i]记录V0到i的最短距离,path[i]记录从V0到i路径上的i前面的一个顶点。
1.从V-U中选择使dist[i]值最小的顶点i,将i加入到U中;
2.更新与i直接相邻顶点的dist值。(dist[j]=min{dist[j],dist[i]+matrix[i][j]})
3.知道U=V,停止。
public class Dijstra { // 定义一个无穷大的值 private static int maxInt = 32767; // 定点个数 private static final int vertexNum = 5; // 定义一个图 int[][] arry = new int[vertexNum][vertexNum]; // 定义一个S集和存标示集合中的点是否被访问过 boolean[] s = new boolean[vertexNum]; // 定义一个存放最小路径的dist int dist[] = new int[vertexNum]; // 记录前驱节点 int prev[] = new int[vertexNum]; int u = 0; /** * 初始化图 */ public Dijstra() { for (int i = 0; i < vertexNum; i++) { for (int j = 0; j < vertexNum; j++) { // 初始化图的时候全部设置为最大值 arry[i][j] = maxInt; } } arry[0][1] = 100; arry[4][3] = 50; arry[0][4] = 10; arry[0][2] = 30; arry[3][1] = 10; arry[2][3] = 60; arry[2][1] = 60; for (int i = 0; i < s.length; i++) { s[i] = false; } } /** * dijstra算法的实现 * * 1 初始化dist找到与传入节点相邻的节点与最小距离 * 2 把传入的节点加入S集 * 3 找到S集中距离顶点最近的点u,加入S集 * 4以顶点u做为过度点,检测从原点到任意非S集的点的距离做更新 * 5 把过度点U,记做当前点的前驱节点 */ public void dijstra(int v0) { for (int i = 0; i < vertexNum; i++) { // 起点到任意点的距离 dist[i] = arry[v0][i]; // 如果原点当当前点的距离为无穷大 if (dist[i] == maxInt) { prev[i] = -1; } else { prev[i] = v0; } } // 把原点添加到S集中 s[v0] = true; // 初始化原点到原点的距离 dist[v0] = 0; //找到距离原点距离最小点 for (int j = 0; j < vertexNum; j++) { //定义一个大小 int inf=maxInt; //从初始化好的dist中找到距离原点距离最小的点 for (int k = 0; k < vertexNum; k++) { if (!s[k] && inf > dist[k]) { inf = dist[k]; u=k; } } //把最小距离点加入s集合 s[u] = true; // 以u为过度点让最短距离点更新其他点 for (int k = 0; k < vertexNum; k++) { // 如果当前点在集合中,并且原点与到过度点到目标点的距离小于原点到目标点 if (!s[k] && inf + arry[u][k] <= arry[v0][k]) { // 先更新图上的边, arry[v0][k] = inf + arry[u][k]; //再更新dist dist[k]=arry[v0][k]; //更新这个顶点的前驱 prev[k]=u; } } } } public static void main(String[] args) { Dijstra dijstra=new Dijstra(); dijstra.dijstra(0); for(int i=0;i<dijstra.prev.length;i++){ int k=0; System.out.println(dijstra.prev[i]+"-->"+i); } } }
结果
-1-->0 3-->1 0-->2 4-->3