dijstra算法

                                                  Dijkstra算法(单源最短路径)

      单源最短路径问题,即在图中求出给定顶点到其它任一顶点的最短路径。在弄清楚如何求算单源最短路径问题之前,必须弄清楚最短路径的最优子结构性质。

一.最短路径的最优子结构性质

   该性质描述为:如果P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么P(k,s)必定是从k到s的最短路径。下面证明该性质的正确性。

   假设P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P(s,j)。而P(k,s)不是从k到s的最短距离,那么必定存在另一条从k到s的最短路径P'(k,s),那么P'(i,j)=P(i,k)+P'(k,s)+P(s,j)<P(i,j)。则与P(i,j)是从i到j的最短路径相矛盾。因此该性质得证。

二.Dijkstra算法

   由上述性质可知,如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点。那么(Vi...Vk)也必定是从i到k的最短路径。为了求出最短路径,Dijkstra就提出了以最短路径长度递增,逐次生成最短路径的算法。譬如对于源顶点V0,首先选择其直接相邻的顶点中长度最短的顶点Vi,那么当前已知可得从V0到达Vj顶点的最短距离dist[j]=min{dist[j],dist[i]+matrix[i][j]}。根据这种思路,

假设存在G=<V,E>,源顶点为V0,U={V0},dist[i]记录V0到i的最短距离,path[i]记录从V0到i路径上的i前面的一个顶点。

1.从V-U中选择使dist[i]值最小的顶点i,将i加入到U中;

2.更新与i直接相邻顶点的dist值。(dist[j]=min{dist[j],dist[i]+matrix[i][j]})

3.知道U=V,停止。



public class Dijstra {
	// 定义一个无穷大的值
	private static int maxInt = 32767;
	// 定点个数
	private static final int vertexNum = 5;
	// 定义一个图
	int[][] arry = new int[vertexNum][vertexNum];

	// 定义一个S集和存标示集合中的点是否被访问过
	boolean[] s = new boolean[vertexNum];
	// 定义一个存放最小路径的dist
	int dist[] = new int[vertexNum];
	// 记录前驱节点
	int prev[] = new int[vertexNum];
	int u = 0;
	/**
	 * 初始化图
	 */
	public Dijstra() {
		for (int i = 0; i < vertexNum; i++) {
			for (int j = 0; j < vertexNum; j++) {
				// 初始化图的时候全部设置为最大值
				arry[i][j] = maxInt;
			}
		}
		arry[0][1] = 100;
		arry[4][3] = 50;
		arry[0][4] = 10;
		arry[0][2] = 30;
		arry[3][1] = 10;
		arry[2][3] = 60;
		arry[2][1] = 60;
		for (int i = 0; i < s.length; i++) {
			s[i] = false;
		}

	}

	/**
	 * dijstra算法的实现
	 * 
	 * 1 初始化dist找到与传入节点相邻的节点与最小距离 
	 * 2 把传入的节点加入S集 
	 * 3 找到S集中距离顶点最近的点u,加入S集
	 * 4以顶点u做为过度点,检测从原点到任意非S集的点的距离做更新 
	 * 5 把过度点U,记做当前点的前驱节点
	 */
	public void dijstra(int v0) {

		for (int i = 0; i < vertexNum; i++) {

			// 起点到任意点的距离
			dist[i] = arry[v0][i];
			// 如果原点当当前点的距离为无穷大
			if (dist[i] == maxInt) {
				prev[i] = -1;
			} else {
				prev[i] = v0;
			}

		}

		// 把原点添加到S集中
		s[v0] = true;
		// 初始化原点到原点的距离
		dist[v0] = 0;
		
		//找到距离原点距离最小点
		for (int j = 0; j < vertexNum; j++) {
			//定义一个大小
			int inf=maxInt;
			//从初始化好的dist中找到距离原点距离最小的点
			for (int k = 0; k < vertexNum; k++) {
				if (!s[k] &&  inf > dist[k]) {
					inf = dist[k];
					u=k;
				}
			}
			//把最小距离点加入s集合
			s[u] = true;
			// 以u为过度点让最短距离点更新其他点
			for (int k = 0; k < vertexNum; k++) {
				// 如果当前点在集合中,并且原点与到过度点到目标点的距离小于原点到目标点
				if (!s[k] && inf + arry[u][k] <= arry[v0][k]) {
					// 先更新图上的边,
					arry[v0][k] = inf + arry[u][k];
					//再更新dist
					dist[k]=arry[v0][k];
					//更新这个顶点的前驱
					prev[k]=u;
				}
			}
		}
	}

	
	public static void main(String[] args) {
	
		Dijstra dijstra=new Dijstra();
		dijstra.dijstra(0);
		
		for(int i=0;i<dijstra.prev.length;i++){
			int k=0;
			System.out.println(dijstra.prev[i]+"-->"+i);
		}
	
	}
}
结果
-1-->0
3-->1
0-->2
4-->3


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值