【Jiya&Chieng】(零)Jiya和Chieng的故事

本文介绍了一种在无明确需求情况下启动项目的策略:通过构建一个插件框架来逐步迭代和完善项目。作者决定使用C++开发一个名为Jiya的项目,并将其核心命名为Chieng。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

JiyaChieng 的故事

忙碌之余,本人想自己写个项目玩玩。于是,本人遇到了这样一个问题:在无明确需求的情况下,如何开发一个稍大的项目呢?对于这个问题,本人的态度是:如果只是出于练手的目的,那么最好的选择就是先动起来。

那么,怎么动呢?毕竟,写一百次HelloWorld,似乎没什么意义。这里,本人的态度是,每一次练手成果,都应该成为下一次练手的辅助。

出于这个目的,在什么都没有(没有特定需求)的情况下,本人为这个暂时没影的项目选择了个框架:插件框架。本人搜了一些资料,姑且做一个通俗的解释:一个迷你的核心系统,再加上各种各样的插件。它有一个优点:增减插件的时候,它是不需要停止运行的。

本人认为,为一个项目取一个好听的名字,是一个能鼓励自己坚持做下去的好方法。这就像人们为宠物取名字一样。本人认为,这个项目可以取名为Jiya,而这个小内核可以叫做Chieng。没错,就是吉雅和奇恩,都是福气满满的名字啊。

上述便是Jiya和它的Chieng的开始。

实际开发时,本人将采用C++作为开发语言。

变分模态分解(Variational Mode Decomposition, VMD)是一种强大的非线性、无参数信号处理技术,专门用于复杂非平稳信号的分析与分解。它由Eckart DietzHerbert Krim于2011年提出,主要针对传统傅立叶变换在处理非平稳信号时的不足。VMD的核心思想是将复杂信号分解为一系列模态函数(即固有模态函数,IMFs),每个IMF具有独特的频率成分局部特性。这一过程与小波分析或经验模态分解(EMD)类似,但VMD通过变分优化框架显著提升了分解的稳定性准确性。 在MATLAB环境中实现VMD,可以帮助我们更好地理解应用这一技术。其核心算法主要包括以下步骤:首先进行初始化,设定模态数并为每个模态分配初始频率估计;接着采用交替最小二乘法,通过交替最小化残差平方以及模态频率的离散时间傅立叶变换(DTFT)约束,更新每个模态函数中心频率;最后通过迭代优化,在每次迭代中优化所有IMF的幅度相位,直至满足停止条件(如达到预设迭代次数或残差平方小于阈值)。 MATLAB中的VMD实现通常包括以下部分:数据预处理,如对原始信号进行归一化或去除直流偏置,以简化后续处理;定义VMD结构,设置模态数、迭代次数约束参数等;VMD算法主体,包含初始化、交替最小二乘法迭代优化过程;以及后处理,对分解结果进行评估可视化,例如计算每个模态的频谱特性,绘制IMF的时频分布图。如果提供了一个包含VMD算法的压缩包文件,其中的“VMD”可能是MATLAB代码文件或完整的项目文件夹,可能包含主程序、函数库、示例数据结果可视化脚本。通过运行这些代码,可以直观地看到VMD如何将复杂信号分解为独立模态,并理解每个模态的物理意义。 VMD在多个领域具有广泛的应用,包括信号处理(如声学、振动、生物医学信号分析)、图像处理(如图像去噪、特征提取)、金融时间序列分析(识
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值