链接:https://www.zhihu.com/question/405837569
编辑:深度学习与计算机视觉
声明:仅做学术分享,侵删
请从自己的memory database中调用search函数,分享你所期待的AI未来。要求:必须是能在地球上的场景(谢绝外太空/虚拟世界科幻),而且20年内理论上有可能发生的哟~ 看看大神们的预测。
作者:tensorspace
https://www.zhihu.com/question/405837569/answer/1343926149
7月9日至11日,2020世界人工智能大会在上海召开,不过因为会议议题较高的技术含量,除了主流媒体的报道以外似乎没有在坊间有太多的回音。而同为落户上海的大型展会,中国国际数码互动娱乐展览会,也就是大家熟悉的ChinaJoy,相比之下人气要高得多,赏心悦目的ShowGirl和Coser比高冷的高科技更容易让人亲近,毕竟李开复曾经说过,与AI不同,我们(人类)有爱。其实,人工智能大会和ChinaJoy并非风马牛不相及。在今年的人工智能大会的开幕式上,4位虚拟歌手(微软小冰、百度小度、小米小爱、B站泠鸢)合唱主题曲《智联家园》成为全场的焦点,而这些虚拟歌手的的老前辈初音未来,早就已经是ChinaJoy等ACG活动的常客,甚至还开启了全球巡演。
不可否认。科技已经润物细无声的走进了人们的精神世界。提到人工智能或者自动化,大家可能首先会想到代替人类进行各种枯燥重复性劳作的机器人,进而担心人工智能会取代人类的地位甚至凌驾于人类之上。其实,在 AI 分担了我们繁重的工作后,我们才会有更多的时间去享受生活,而且正如百度想通过不断发展成熟的小度告诉大家的,科技可以成为我们的精神伴侣,让我们生活得更加快乐。
以Crypton公司的初音未来开始,虚拟人物正在被更多人所接受和喜爱。初音未来的歌唱内容由于可以被方便的定制,适配不同风格的音乐作品,在泛动漫爱好者中有着极高的人气,成为科技与创意结合的典范。随着技术发展,虚拟人物输出的也不再是简单的语音。拜最新的信息技术所赐,观众们可以在舞台上欣赏到邓丽君,迈克尔杰克逊,猫王这些已经过世多年的巨星的音容笑貌。
我们也可以把这些虚拟人物放进口袋,摆在桌上,装进车里,语音个人助理帮我们操作家电和汽车,搜索想要了解的信息。虽然当下这些技术还有些不完美让人吐槽的地方,但不妨让我们展望一下在可预见的未来,智能化的虚拟人物会给我们的生活带来怎样的进化。
未来之一:属于自己的明星。我们生活在一个偶像+颜值时代,大家对于美的消费规模和要求也越来越高。活跃在影视剧上的各路小鲜肉,网络直播平台的铺天盖地的颜值主播几乎无死角的满足着各种不同的什么继续求。然而,明星的数量终究是有限的,明星们的时间也是有限的,很多粉丝期待的特定明星之间的梦幻共演往往只能存在于美好的想象当中。当AI技术足够强大的时候,我们可以根据每个观众的喜好为之量身打造专属的的虚拟明星,让那个ta只为自己唱歌,跳舞,甚至表演自己设定剧情的戏剧。在更先进的人工智能的加持下,这一切的实现甚至不需要我们去学习音乐和创意写作即可由程序自动实现。也许到那个时候很少有人会为了让主播在直播里说一句谢谢XX哥的打赏而给主播一掷千金。
未来之二:高端生活助理。很多人在看过王刚这样的美食达人的教程以后,依然会有脑子学会了但手没有学会的遗憾。纵然小度能够回答我们各种各样的问题,却无法从手机当中走出来帮我们去完成一道菜品。不过,随着智能家居的进化,小度这样的虚拟助手也是可以走出虚拟拥抱具象的。通用人工智能和通用机器人的技术的进步一直都没有停止过。现在DeepMind等公司开发的人工智能程序已经能够自己探索一些简单的电脑游戏,例如打砖块的规则,并且通过练习熟练掌握游戏的玩法,我相信在不久的将来,大家的智能个人助手也能够进化到看完大厨的烹饪教学视频以后就能够学会菜品的烹饪方法的程度。到那个时候,我们的家用机器人也不再是只能干扫地或者拖地一种任务的专用机器人,功能将更加的泛化,这样小度就可以用自己学到的烹饪知识控制家用机器人为我们去做出精美的菜品。
未来之三:智囊和知己。《超能陆战队》里呆萌可爱但是又无微不至的保护着小主人的大白不知道成为了多少人心目中的理想伴侣。像大白一样的智能伴侣在未来将会走进每个人的生活,充分满足人类的精神需求。
我们的精神需求大体可以分成理性的和感性的。理性的精神需求也就是我们时常面临的各种人生选择,小到今天外卖点什么,大到老婆和母亲掉水里了先救哪一位。眼下正值一年一度的高考季,大量的应届考生就需要为高考志愿做出选择。这样的决策需要非常丰富的知识储备,对个人信息的深入了解以及高度的理性,这恰好是人类,包括相当多的考生家长和中学教师的短板和人工智能的长处。当下已经有很多技术工作者做了这方面的尝试,诸如各种大数据支持的志愿填报咨询,尽管水平参差不齐,但我认为这些问题都是在技术可解决的范围以内的。如果我们能够很好的解决其中涉及到的技术与道德,法律问题,在可预想将来,我们的智能虚拟助理可以发挥人工智能的长处来帮我们做决策,成为人类的智囊。感性的精神需求方面,虚拟个人助理将可能成为人类在情感上的助手,在孤独时给我们慰藉,在低落时给予我们力量。
目前的大众视角下这样的情景似乎有点难以接受,毕竟很容易让人联想到早先某些游戏宅和游戏中的女主角“结婚”的事件,但是抛开先入为的观点,一个能够安静地聆听内心独白并给出恰当的心理抚慰的对象对很多人而言,即便在现实中也非常难以实现,也无怪乎很多人会花费大量的时间精力甚至金钱在寻找一个善解人意的听众。而从技术上,人类情感的识别对于人工智能来讲已经不是一个难题。如果让虚拟助手以近乎为零的成本和社会效应满足人类的情感需求,这未尝不是一件好事。
现在我们的虚拟助手,正如魔镜中的精灵,天文地理无所不知但是无法走出镜子;但是在将来,我们将会看到它们变成神灯里的神灵,可以随时被我们召唤出来达成我们的心愿。我相信这个未来不会太远。
作者:Zhihao
https://www.zhihu.com/question/405837569/answer/1327992128
从AI+Robotic领域来看,我相信未来20年这个相对来说还比较空白的领域将会诞生一大批独角兽(是AI+Robotic,不是传统的机械占比较大的机器人公司)。
1.机器人现在能做什么?
机器人在工厂中已经十分常见了,大部分机器人可以熟练地在重复和一直的结构化环境中,抓取和操作物体,然而需要机器人提前知道物体的种类、几何形状、材料特性、重量和位置。在这些早期的工厂中,机器人手臂需要遵循预定的轨迹,并假定物体总是出现在同一个地方。
而如今,在智能技术的加持下,机器人可以则可以不设置固定的轨迹,通过物体识别与定位,检测到在不同位置的物体,大大简化了流水线的部署过程。然而仍然需要限定物体种类的数量,并提供预先训练好的能够识别这些物体的模型,且无法做到100%成功识别,工业上对精度要求较高,往往需要达到99.999%的准确率。当然这只是识别这一环,成功识别并定位后,还需要进行抓取。
以往的抓取方法需要提前知道物体的几何模型与物理属性,而如今在基于学习(learning based)和数据驱动(data driven)的技术背景下,机械臂能够更加灵活的抓取未知以及未见过的物体。Dexnet系列(https://berkeleyautomation.github.io/dex-net/)抓取技术,让机器人在比较规则的物体集合中达到98%的成功抓取率,然而在形状比较复杂和透明物体上,其成功率还有很大的提升空间。而抓取只是最基础的机器人操作(robot manipulation)技术。
上述物体识别与定位以及抓取技术都已经在某些环境下达到了98%及以上的准确率,虽然在严格意义下不能说其已经能做这些事情了,但是如果以某些限定的环境和足够的数据为前提,已经能够实现商业化。国内做的比较好的有库柏特@李淼robot,如本@fly qq,梅卡曼德,蓝胖子等公司。国外则是vicarious、covariant等。
2.机器人还不能做什么?
如今不能做的,将是未来20年内有可能实现和诞生独角兽的领域,技术进步具有不确定性,并呈螺旋式发展,下面提到的既可通过发展基础科学(数理化生)解决,也可提高计算机的运算能力与对现实物理世界的建模能力解决(强化学习等方法,说到底人类的进化也是一种长时间"演算"的过程,奖励函数是稀疏奖励生或死即0或1,action是基因选择,世界模型则是整个大自然,从而产生了人类这种智能体),当然也可以通过智能技术的发展解决,尤其是自监督学习、表征学习、元学习,这些技术可以有效抽象出物体特征,降低状态维度,减少状态空间的搜索量。
可变形物体的操作:虽然机器人在操作刚性物体方面已经有很大进展,并能实现部分商业化,但它们仍难以操作可变形的材料,如衣服、蔬菜等。产生变形的操作仍然是待解决的问题,因为需要精确的变形模型,或者通过基于强化学习的技术解决,然而成功率与训练效率都有待提高(Pieter Abbeel经典工作:Cloth grasp point detection based on multiple-view geometric cues with application to robotic towel folding)。
复杂操作:给定一个任务,需要机器人能够完成一系列的动作序列。以抓取任务为例,抓取虽然是基础任务,但是它与后续的操作动作息息相关,比如喝水和倒水,要求抓取的位姿就不一样。还有很多更加复杂的任务,如今的一个趋势是通过分层强化学习解决(如Effificient Bimanual Manipulation Using Learned Task Schemas,成功率仅仅达到了90%)。然而我认为想让机器人真正实现复杂的manipulation任务,需要机器人理解力,理解各种物体之间的不同接触对物体本身状态的影响。
改变物体状态:虽然如今的图像识别技术能够有效识别物体的种类,但是识别物体的状态仍然是有待解决的问题,如何去表征和识别一个削了皮的苹果,削了一半皮的苹果和削了三分之一皮的苹果?这是让机器人实现削皮的前提。如何识别一些微小的变化,比如菜上有一小块烂掉了,机器人需要把这一块去掉。
当然AI+机器人领域还有很多待解决的问题,比如如何赋予机器人触觉信息,双臂机器人如何进行运动规划,人机协作时的安全性问题,机器人如何根据人类意图进行协同作业,soft hands等等。
3.未来20年的展望
综合上述机器人能够做的以及不能做的,展望一下未来20年,能够切切实实改变人们生活的技术。由于基础科学的进步是难以预测的,那么我们假设未来20年基础科学没有十分大的进步,在这个前提下,分析AI+机器人领域可以如何改变人们的生活。
技术前提:如果基础科学没有十分大的进步,也就是说机器人的硬件并没有发生巨大改变,柔性材料仍然不能实现灵活多自由度驱动,触觉传感器仍然维持较大体积与较高成本。仅有更加专用化芯片提高运算能力,自监督学习与表征学习等方法能够在有限的结构化场景下完成较好的特征提取工作,强化学习技术效率与通用性大大提高。当然上述都是假设,说不定基础学科并没有很大进步,但是仍然发明出了多自由度的柔性材料驱动方法。
AI+机器人对生活的改变:
上述的一个重要前提就是在有限的结构化环境下,再具体一些,就是指能够较低成本的获取大量数据(由于自监督学习的发展,未标注的也是可以的),并且不会出现非常多的没有考虑进去的变量。比如在自动驾驶领域,变量实在是有点多,数据驱动的算法很难将各种变量考虑进去,因此要真正实现L5(完全自动驾驶)级别的自动驾驶,如果基础学科没有巨大突破,还是比较困难的,但是L4(限定环境下进行自动驾驶)级别的自动驾驶还是很有希望的。
回过头来看第二节中所述的可变形物体操作,已经可以在特定环境中解决,我们在这里假设表征学习已经能够同时提取物体的高级别的语义特征及低级别的形状特征,那么可以通过表征学习去提取特征并通过强化学习进行训练,在工业化环境中,机器人则可以实现操作一些柔性物体。比如在毛巾生产中,纺织、织造等环节自动化程度很高,但整理包装仍然依靠人工。而机器人这一能力能够实现整个生产流程的自动化,大大提高生产效率。
再来看第二节中所提到的复杂操作,如今工厂中几乎所有的复杂操作,要么是通过人工实现,要么是将其拆解为多个结构化的可用机器操作的子流程,第一种效率低,第二种成本高。而随着机器人对力的理解,对现实物体之间互相作用互相影响的过程的理解,这些复杂操作都可以通过机器人实现。比如一些装配工作。
最后是物体状态的识别,如果此技术可以实现(可能性较大的实现途径仍然是表征学习),那么家庭做饭机器人不再是梦想。如今机器人的成本在不断降低,我相信随着机器人三大核心零部件的国产化,以及机器人闭环控制技术的发展(如今的逆运动学,抓取规划仍然是开环的),将持续降低机器人的成本。当然我们离通用化的家庭服务机器人仍然有一段距离。
作者:宝珠道人
https://www.zhihu.com/question/405837569/answer/1336371876
AI 20年内将会给我们的生活带来什么改变?很有意思的话题,回答这个问题之前,我们首先启动search函数在自己的memory database中进行搜索,看看二十年前发生的事情。
下图是电影《碟中谍4》中的一个画面:男主角汤姆克鲁斯通过戴上一副神奇的“眼镜”,可以在火车站的茫茫人流中进行瞬时人脸识别。不仅识别人群中的男女,更重要的是,还可以识别对面的人是否是指定数据库中的敏感人物,比如特工。
这个镜头出现在20年前的电影中,对当时来说犹如科幻一般。当时人脸识别的技术处在什么水平呢。我们来看看下图,那个年代一篇名满天下的学术论文。
当然,该论文最初的会议版本发表时间早一点,在2001年CVPR会议上。这篇论文解决的问题看题目也就知道:实时的人脸检测。今天我们不讨论这个工作具体怎么实现,主要是借此反映当时的技术水平。
在这个工作之前,人脸检测,也就是判断一张图像上有没有人脸,若有的话,有多少个人脸,分别有多大和在哪些位置,这些是开展人脸识别应用的前提(要知道人脸在哪)。回到现在看这是一个很简单的任务,很多方法都能轻松做到,但是在当时(这个工作出来之前),确确实实是无法做到实时的(可简单理解为检测延迟小于500毫秒)。
回到现在,不到20年时间,人脸识别相关的应用已经取得了巨大的突破,并广泛应用于社会生活的多个方面,包括多个场景下的身份验证、表情识别、虚拟化妆等。类似于上述《碟中谍4》的例子也在特定场景成为现实。以20年为窗口进行对比,我们可以看到,科学技术还是显著提升了社会生活的方方面面,将一些过去类似于科幻的场景变成现实。
20年前人脸检测识别是科技前沿,就如当下的AI。当下社会生活中最火热的词汇中,AI无疑是一个。短短数年间,AI技术的发展已经推动了语音识别、计算机视觉、自然语言处理等领域诸多任务性能的显著提升,同时也通过与医疗、交通、金融、工业制造等传统领域的深度融合创新,开启了许多新型应用场景。世界主要大国也将发展AI技术作为非常重要的国家战略。那么,再以20年为一个窗口来看,20年后的AI会是什么样子呢。
虽然说预测未来是很有风险,很容易被打脸的事情。但出于满足自己的好奇心,今天还是从个人认识的角度出发进行展望下。无人驾驶、对话式AI,这两个方面,个人认为是20年内肯定能给大家生活带来巨大改变的技术。就看资本、政策、商业模式的成熟闭环了。中国AI看百度,百度在这两块业务也有专门的BG(Apollo,小度)在坚持。不管外界如何看衰,我个人还是长线看好的。
在此,谈谈最近在看的另外两个领域,“类脑计算”和“AI+医疗”:
一、类脑智能:具有类人情感,像人一样“有温度”。
现阶段AI技术虽然取得了长足进步,但其本质还是一种数据驱动、基于梯度优化的“贪心”算法。换句话说,AI技术只是挖掘到了最大化数据差异的内容,进而提供了高质量的分类、检测等决策判别,其并不是像人一样的理解和推理,也不像人一样具有情感和逻辑等。这是当前限制AI技术向前发展的核心问题。
现阶段学术界和产业界都已经意识到这一问题,开始思考如何突破这一局限。大家目前最能接受的共识时:让AI算法模拟人脑,当前世界上最高级的智能体之一。当前,人脑的结构和计算机制等并未完全搞清楚。短短几年内,这个领域想取得突破恐怕并不容易,但若以20年为间隔,本人对此还是持以乐观态度。
由科大牵头的“类脑智能技术及应用国家工程实验室”我去参观过,有很多让人兴奋的研究前景和成果。基于此,可以展望的是:20年后计算机可以多模仿人脑,其内在的计算技术也能有一定相似,基于此构建的各种服务和机器人可以有知识、有情感、有逻辑,可以向人类提供“有温度”的计算服务。
当然很多人会diss,人脑的结构都没有研究清楚,类脑的进展是否缥缈无期。眼下,AI在投资圈似乎回归理性,几年后AI是否会陷入又一轮低潮,这个我不知道。Deep Learning促使AI回到大众视野。那会不会在20年内的某一天,类脑计算的某项突出成果也会像DL一样,掀起一波全社会狂欢的热潮呢?我持乐观态度。
二、AI+医疗:AI重塑医疗行业,小病不用去医院
人类都有生老病死,上千年来医疗永远都是“朝阳”行业。从某种程度来讲,医学是一门经验性科学。世界各国,国内各地的医疗资源分布不均将长期存在。AI技术是突破这一核心制肘的关键因素。
利用AI技术基于大量高质量标注医疗数据建模学习,可以构建与人类顶尖医生诊断水平媲美的专科AI医生。目前在细分领域的专病种上,例如肺部疾病诊断、眼科疾病诊断等方面,AI模型已经取得了相当不错的检测精度。假以时日,这些模型经过进一步锤炼后,完全可以在医疗资源不那么丰富的地方取代人类医生,提供初步诊断或筛查甚至更为重要的医疗服务。
当然,医疗是敏感行业,这些技术的应用和广泛接受还需要突破伦理和认知等多个关口。但以20年来预估,我对此持以乐观态度。届时,医疗行业相比现在恐怕有重大变化:大家去看病时,不用去医院,只要在网络上或者小型的机器人检查中心就可以完成,全程无需人工干预。只有那些比较复杂的疾病,才需要人机结合的诊断模式。
作者:漆桂林
https://www.zhihu.com/question/405837569/answer/1328322975
谢谢李开复博士的邀请。2018的一个类似的帖子,我写过以下的回复,我觉得现在还是适用的。
人工智能已经在改变我们的生活,而且未来必将成为我们生活的一部分,可以从衣食住行几个方面来说:
1.制作衣服的整个流程都可以利用AI技术,包括怎么生成创意(利用图像理解技术可以从海量的衣服设计图中学习可能的模式,并且生成新的设计图),工厂怎么造(利用自动化工业机器人),怎么销售(利用AI+物联网),怎么买(将来的商场可能都是虚拟的商场),怎么付钱,怎么售后等。
2.民以食为天,吃肯定是AI的一个重要应用,随着智慧农业、智慧厨房的出现,AI技术将发挥很大作用,通过语音方式控制各种家电,并且通过爬取各种数据,把各种数据结构化形成知识图谱,可以提供良好的对话服务,自动生成菜谱,最终执行当然是炒菜机器人啦,自动炒菜应该是可以实现。
3.住就更广泛了,从建筑行业的各种智能化开始(比如说AI搞设计图,用机器人去盖房子),到通过AI技术来买卖房子,在家里提供智能家居的服务等。
4.行有多方面应用,比如说无人车(包括无人公交车和无人自行车),以及无人机,都可以让出行选择余地更多,通过智慧城市,可以智能规划行车路线,避免交通堵塞,通过分析用户的出行数据,推荐可能的出行方案,推荐可能的旅游地等。
上面的回答是疫情之前的,今年发生的新冠疫情将深远地改变我们的生活,人与人的物理距离越来越远,但是虚拟距离则越来越近,在这样一个新的世界里,AI的作用会更加明显。
1.智能制造的速度会加快,中国的新基建规划中,工业互联网是跟AI并列的,AI跟工业互联网有很好的结合点。目前智能制造中,AI的应用可以看得到的主要还是自动化的流水线设备,这是跟AI领域的机器控制相关,但是未来的发展应该是无人工厂以及互联的工厂,这里要实现无人工厂,不仅仅需要自动化的流水线设备,还需要智能化的数据管理,RPA技术的发展应该可以让这个成为现实,智能检测探头发现工厂的风险,CV技术的发展应该可以实现这点,设备的故障自动化检测和维修方面,CV+KG技术可以实现设备的自动化检测,而机器人+KG的技术可以实现自动化维修。工厂不会是孤立存在的,通过KG的技术,可以将各个工厂的数据互联,从而形成一个知识网络。当然,这里5G甚至6G的技术也是很关键的。
2.AI技术跟AR\VR技术、5G技术的结合,会彻底改变我们的生活方式。比如说看电影和旅游。随着疫情的发展,到电影院观影将是一种奢望,扎堆到旅游景点也是很难再有了,这就会催生出一些虚拟远程影院和虚拟旅游,在虚拟的世界中,让人们体验更多的精彩。远程会议和远程协作也是这些技术的产物,这些都会让人们的协作更加高效,信息流通更快。
3.AI技术的发展将会解决医患关系紧张的问题。虽然目前要实现机器人诊断还是比较困难,但是20年后,机器人智能导诊(这里需要用到对话技术和KG技术),机器辅助医生开药并且提醒用药禁忌,机器辅助诊断,机器通过读影像片子找到潜在的病灶,情感安慰机器人,应该都有希望出现。
4.社会安全将得到提升。随着AI技术的发展,以及大数据技术的普及,各种数据都将实现互联,KG技术和多模态技术的发展使得文本、图像、视频的理解更容易,这些技术的发展将使得犯罪分子藏匿更加困难。重大公共安全事件的防控也会比现在好很多。从文本和图像、视频中自动化抽取事件相关信息,建立事件的关联关系,结合人物图谱、公共交通图谱等,可以快速定位到有重大威胁的人物,并且可以做危险事件的预测和防控。
☆ END ☆
如果看到这里,说明你喜欢这篇文章,请转发、点赞。微信搜索「uncle_pn」,欢迎添加小编微信「 mthler」,每日朋友圈更新一篇高质量博文(无广告)。
↓扫描二维码添加小编↓