2024年,扩散模型方向还能发顶会吗?

本文介绍了生成式扩散在AI领域的进展,包括谷歌和OpenAI的模型如ImageNet和Dall·E2。讲解了如何利用生成模型合成高质量数据,以及在图像和自然语言处理中的应用。文章重点讨论了从VAE到扩散模型的转变,以及在计算机博士李老师的直播中详细讲解的内容,包括生成模型的优势、应用领域和相关技术细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

生成式扩散可以探索如何使用生成模型来合成具有高质量和多样性的数据。在 AI 长期发展中,谷歌、OpenAI 等都接连推出了自己的生成模型,如 Imagen、Dall·E 2 等。

生成式扩散还可以应用于诸多领域。例如,图像生成方面,可以使用生成式扩散来生成高质量的图像样本。在自然语言处理领域,生成式扩散可以用于合成自然语言文本,生成多样化的句子和段落。

11月1日,我们邀请到哈工大计算机博士,多篇顶会一作作者李老师为我们带来——从VAE到扩散模型,生成式扩散新SOTA,带我们探索生成模型的多样性。

扫码参与直播(赠老师授课PPT)

免费领导师亲自整理2021-2023年扩散模型论文

f533828eab6a4c21ccf57cb2c7502f22.png

3edf5f49aeee2e1308cc165379ec587d.png文末有福利

9ff826886eaf042cd8afd6ebe7a8d061.gif

107篇最新扩散模型论文部分展示

01

导师简介

dab8d6c959001fb2dae8ed757b298581.gif

-哈工学计算机科学与技术PhD在读

-在IEEE TCSVT等中科院一区期刊和国际顶级会议上共发表论文多篇,包括一区期刊IEEE Transactions on Circuits and Systems for Video Technology, 二区期刊Neurocomputing,CCF-B类会议ICME, ICASSP等

-担任国际顶级会议 AAAI, NeurIPS,期刊 IEEE TCSVT 的常任审稿人

-研究方向:人工智能、机器学习、深度学习、多模态表征学习、脉冲神经网络和信源信道联合编码等

02

直播大纲

e83a097f4d4cfe305c195a9235669b4d.gif

‍‍1)探索如何使用生成模型来合成具有高质量和多样性的数据

3)生成模型的优势

4)生成模型可以应用的领域‍‍

ce97e43f5c76f34db4feeb3c48fb3a5a.jpeg

扫码参与直播(赠老师授课PPT)

免费领导师亲自整理2021-2023年扩散模型论文

541e774c817c82716072ced196d510b0.png

前段时间,谷歌推出了DreamBooth扩散模型,实现了将现实物体在图像中真实还原的功能,只需几张(通常 3~5 张)指定物体的照片和相应的类名(如“狗”)作为输入,并添加一个唯一标识符植入不同的文字描述中,DreamBooth 就能让被指定物体“完美”出现在用户想要生成的场景中。

e3f4f81fa545d6c4f66eb83e03df3444.png

7fdf7a14e719e21e67387820634814c1.png

生成式扩散的具体专业内容涉及多个领域和技术,包括生成模型、梯度下降算法、扩散过程和生成样本评估等。

1.生成模型:生成式扩散的核心是使用生成模型来合成数据。常用的生成模型包括生成对抗网络(GANs)、变分自编码器(VAEs)、自回归模型等。这些模型能够从潜在空间(latent space)中采样,并通过学习数据分布的特征来生成新样本。

2.梯度下降算法:生成式扩散通常使用梯度下降算法来训练生成模型。梯度下降算法通过最小化生成样本与真实数据之间的差异来提高生成模型的性能。常用的梯度下降算法包括随机梯度下降(SGD)、Adam优化器等。

3.扩散过程:扩散过程是生成式扩散的核心方法。扩散过程通过逐渐将噪声信号中添加真实数据,使噪声逐渐"扩散"成具有高质量的数据。这个过程中使用梯度下降算法对生成模型进行优化,从而逐渐减小与真实数据之间的差异。

4.生成样本评估:生成式扩散研究中,评估生成样本的质量和多样性是非常重要的。常用的评估方法包括计算生成样本与真实数据之间的相似度、计算样本多样性的度量指标等。这些评估方法帮助研究者了解生成模型的性能,并指导模型的改进。

c81a308cf73dc22d5f1fb69ec3776d98.png

扫码参与直播(赠老师授课PPT)

免费领导师亲自整理2021-2023年大模型论文

334ad328bf2072ff52678618d53f9586.png

e8a5b00105be5ed5df176b62d2e2a273.gif

107篇最新扩散模型论文部分展示

对于还没有发过第一篇论文,还不能通过其它方面来证明自己天赋异禀的科研新手,学会如何写论文、发顶会的重要性不言而喻。

发顶会到底难不难?近年来各大顶会的论文接收数量逐年攀升,身边的朋友同学也常有听闻成功发顶会,总让人觉得发顶会这事儿好像没那么难!

但是到了真正实操阶段才发现,并不那么简单,可能照着自己的想法做下去并不能写出一篇好的论文、甚至不能写出论文。掌握方法,有人指点和引导很重要!

还在为创新点而头秃的CSer,还在愁如何写出一篇好论文的科研党,一定都需要来自顶会论文作者、顶会审稿人的经验传授和指点。

很可能你卡了很久的某个点,在和学术前辈们聊完之后就能轻松解决。

扫描二维码

与大牛导师一对一meeting

9cf89ee3051e1efc7d0ed7cdb58c43e0.png

文末福利

小沃整理了沃恩智慧联合创始人Paul老师的精品系列付费课程,原价3999元,现0元免费领,包含计算机领域各方向热点内容及论文写作技巧干货!

b6308c9857c83b4e638a31b47574879a.png

5aef230b74165de9d771ac7fcd288456.jpeg

caf57b7dee8556bb60e5e303f47ad233.png

立即扫码 赠系列课程

-END-

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值