题目大意
给一个\(n\)个点\(m\)条边的无向图,求符合条件的三元组\((s,c,f)\)个数:存在一条\(s \to f\)的路径,经过点\(c\),并且每个点最多经过一次。\(n \le 10^5,m \le 2 \times 10^5\)。
Solution
圆方树板题。
建完圆方树后,枚举每个点为\(c\),计算\(s,f\)的个数。
考虑每个点的权值,对于圆点权值为\(-1\),方点权值为它代表的V-DCC大小。
考虑在\(c\)子树内的,即为各子树的\(siz\)相乘(\(siz\)指子树内圆点个数)。\(s\)(或\(f\))在\(c\)子树外的情况,即为\(siz_c \times (N - siz_c)\),N指当前连通块点数。最后别忘了*2,因为\(s,f\)可以互换。最后乘上权值,结束。
或者也可以用换根dp来做。
# include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 5;
vector <int> g[N],g2[N << 1];
int n,m;
int dfn[N],low[N],w[N << 1],dfntot;
int cnt,s[N << 1],top = 0,Cntn = 0;
void tarjan(int x,int fa)
{
dfn[x] = low[x] = ++dfntot,w[x] = -1; ++Cntn,s[++top] = x;
for(int i = 0; i < (int)g[x].size(); i++)
{
int v = g[x][i];
if(v == fa) continue;
if(!dfn[v])
{
tarjan(v,x);
low[x] = min(low[x],low[v]);
if(low[v] >= dfn[x])
{
w[++cnt] = 1;
g2[cnt].push_back(x),g2[x].push_back(cnt);
int vv;
do
{
vv = s[top--];
++w[cnt];
g2[vv].push_back(cnt),g2[cnt].push_back(vv);
}while(vv != v);
}
}
else low[x] = min(low[x],dfn[v]);
}
return;
}
int siz[N << 1];
long long ans = 0;
void dfs(int x,int fa)
{
siz[x] = (x <= n);
for(int i = 0; i < (int)g2[x].size(); i++)
{
int v = g2[x][i];
if(v == fa) continue;
dfs(v,x);
ans += 2ll * siz[x] * siz[v] * w[x];
siz[x] += siz[v];
}
ans += 2ll * siz[x] * (Cntn - siz[x]) * w[x];
return;
}
int main(void)
{
scanf("%d%d",&n,&m);
cnt = n;
for(int i = 1; i <= m; i++)
{
int u,v; scanf("%d%d",&u,&v);
g[u].push_back(v),g[v].push_back(u);
}
for(int i = 1; i <= n; i++)
{
if(!dfn[i])
{
Cntn = 0;
top = 0;
tarjan(i,0);
if(Cntn > 2) dfs(i,0);
}
}
printf("%lld\n",ans);
return 0;
}