- 博客(7)
- 收藏
- 关注
原创 TensorFlow:实战Google深度学习框架(七)循环神经网络
基本的循环神经网络 循环神经网络的结构 循环神经网络的发明时间已经很早了,最开始被广泛应用是在语言模型中,因为语言模型是有时间序列关系的 循环神经网络的主要用途是处理和预测序列数据。从结构上来看,循环神经网络的隐藏层节点之间是有连接的,隐藏层的输入不仅仅包括输入层的输出,还包括上一时刻隐藏层的输出。因此在当前时刻的输出,不仅仅包括当前时...
2018-08-01 22:33:42 915 1
原创 TensorFlow:实战Google深度学习框架(六)数据处理框架-数据集
除了通过队列进行多线程输入的方法之外,tensorflow还提供了一套更高层的数据数据处理框架。在新的框架中,每一个数据来源被抽象成一个“数据集”,开发者可以进行batching、shuffle等操作。 数据集的基本使用方法:每一个数据来源都是一个数据集,可以是一个张量,可以是一个tfrecord而文件、一个文本文件。。。。。。 由于训练数据无法同时读入内存,从数据集中读...
2018-08-01 22:28:49 345
原创 TensorFlow:实战Google深度学习框架(五)多线程输入数据处理框架
经典的输入数据的处理流程 队列和多线程 在tensorflow中,队列和变量类似,都是计算图上有状态的节点。其他的计算节点可以修改他们的状态。对于变量,可以通过赋值的操作修改变量的取值。对于队列,修改队列的状态的操作主要有enqueue,dequeue(入队,出队)等。 在TensorFlow中,队列不仅仅是一种数据结构,还是...
2018-07-19 10:06:17 422
原创 TensorFlow:实战Google深度学习框架(四)图像数据的处理
TFRecord格式:数据是以tf.train.Example的格式存储的,存储时以Key-Vaule键值对的形式进行存储,不改变原始数据的大小(不对数据进行编码或者解码,图像以图像原始的形式的二进制形式存储),读取时使用相同的feature_map即可使用tf.parse_single_example函数进行解析。 硬盘本地的图片数据集存成一个tfrecord文件 ...
2018-07-19 10:05:04 382
原创 TensorFlow:实战Google深度学习框架(三)模型保存和持久化
tensorflow提供API可以实现神经网络的保存和还原 tf.train.Saver()类 模型的加载 模型的加载还可以用另外一种方式实现 加载部分变量,把类tf.train.Saver()变成tf.train.Saver([v1]),就可以实现只加载v1变量 如果用类tf.train.Sa...
2018-07-19 10:03:24 424
原创 TensorFlow:实战Google深度学习框架(二)变量管理
函数tf.get_variable()可以用来创建变量和获取变量 变量名称是一个必填的参数 创建变量时如果已经有同名的参数,就会报错 如果用来获取一个已经创建的变量,则需要通过函数tf.variable_scope()来生成一个上下文管理器 tf.variable_scope()函数管理tf.get_variable()函数 ...
2018-07-19 10:01:20 186
原创 TensorFlow:实战Google深度学习框架(一)
损失函数https://zhuanlan.zhihu.com/p/24693332(这是一个参考文献) 平方差损失 sigmod函数求导数之后 由于sigmod函数自身的性质,会导致参数的更新十分缓慢,实际应用过程中,效果不是特别好 交叉熵损失函数 交叉熵损失刻画的是两个...
2018-07-19 10:00:04 193
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人