讨论班上同学讲了SIFT图像特征描述子,思路非常清晰,基本要点我也都听懂了,故趁热打铁记录下来。
背景
在描述图像特征的时候,为了算法的鲁棒性,我们往往希望我们提取到的特征具有噪声不变性、尺度不变性、旋转不变性、光照不变性。我们知道,HOG特征具有噪声不变性、光照不变性,却不具有尺度不变性和旋转不变性,存在一定局限性。于是有了HOG特征的改进版本——SIFT特征。SIFT全称是Scale Invariant Feature Transform。
SIFT简介
与HOG在整幅图像上均匀地提取梯度方向统计特征不同,SIFT特征提取分为在图片上寻找关键点和提取关键点邻域信息两部分,在提取特征时只关注稳定的关键点及其附近的信息,使得特征更加具有描述性。
SIFT的亮点就是标红的几个步骤,如图0所示:
图0 关键步骤
本文内容组织如下:
(一)关键点提取
1. 关键点提取方法
2. 尺度-空间最大判断
3. 关键点筛选
(二)关键点特征提取
1. 梯度直方图统计
2. 主方向对齐
3. SIFT图像局部特征描述子
(一)关键点提取