特征描述子——SIFT

本文详细介绍了SIFT(尺度不变特征变换)特征,包括关键点提取的步骤:尺度空间最大判断、关键点筛选,以及关键点特征提取的梯度直方图统计、主方向对齐等,强调了SIFT的尺度不变性和描述性。
摘要由CSDN通过智能技术生成

          讨论班上同学讲了SIFT图像特征描述子,思路非常清晰,基本要点我也都听懂了,故趁热打铁记录下来。


背景


         在描述图像特征的时候,为了算法的鲁棒性,我们往往希望我们提取到的特征具有噪声不变性、尺度不变性、旋转不变性、光照不变性。我们知道,HOG特征具有噪声不变性、光照不变性,却不具有尺度不变性和旋转不变性,存在一定局限性。于是有了HOG特征的改进版本——SIFT特征。SIFT全称是Scale Invariant Feature Transform。


SIFT简介


        与HOG在整幅图像上均匀地提取梯度方向统计特征不同,SIFT特征提取分为在图片上寻找关键点和提取关键点邻域信息两部分,在提取特征时只关注稳定的关键点及其附近的信息,使得特征更加具有描述性。

   SIFT的亮点就是标红的几个步骤,如图0所示:

                                                                                                                                图0    关键步骤



本文内容组织如下:

(一)关键点提取

         1. 关键点提取方法

         2. 尺度-空间最大判断

         3. 关键点筛选       

(二)关键点特征提取

        1.  梯度直方图统计

        2.  主方向对齐

        3.  SIFT图像局部特征描述子


     

(一)关键点提取


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值