机器学习
文章平均质量分 51
listwebit
这个作者很懒,什么都没留下…
展开
-
Xgboost算法详解
参考文献:1.https://www.jianshu.com/p/2f8d35737cc9原创 2020-08-24 14:06:16 · 206 阅读 · 0 评论 -
随机森林算法详解
机器学习算法–集成方法一、背景集成方法通常分为两种:1.平均方法该方法的原理是构建多个独立的估计器,然后取它们的预测结果的平均。一般来说组合之后的估计器是会比单个估计器要好的,因为它的方差减小了。示例: Bagging 方法 , 随机森林2.boosting 方法基估计器是依次构建的,并且每一个基估计器都尝试去减少组合估计器的偏差。这种方法主要目的是为了结合多个弱模型,使集成的模型更...原创 2020-01-16 18:33:47 · 1146 阅读 · 0 评论 -
决策树、随机森林、bagging、boosting、Adaboost、GBDT、XGBoost总结
1.https://zhuanlan.zhihu.com/p/75468124原创 2019-10-09 10:05:50 · 248 阅读 · 0 评论 -
机器学习平台
一、阿里机器学习平台调研1.机器学习平台的定义机器学习平台PAI(Platform of Artificial Intelligence),为传统机器学习和深度学习提供了从数据处理、模型训练、服务部署到预测的一站式服务。2.平台优势通过对底层的分布式算法封装,提供拖拉拽的可视化操作环境,让数据挖掘的创建过程像搭积木一样简单,方便您将算法嵌入到自己的工程中。3.机器学习平台的功能特性...原创 2019-09-27 14:29:27 · 3242 阅读 · 0 评论 -
boosting 算法总结
参考文献:1.https://www.codercto.com/a/51325.html原创 2019-08-30 18:44:38 · 183 阅读 · 0 评论 -
多元线性回归
在将多元线性回归之前先明确几个机器学习中常用的概念。一、几个级别概念1.假设函数(Hypothesis)假设函数:就是预测函数例如一元线性回归:hθ(x)=θ0+θ1xh_\theta(x) = \theta_0 +\theta_1xhθ(x)=θ0+θ1x2.损失函数(Lost function)损失函数:计算的一个样本的误差例如:lθ(x)=h(xi)−yil_\theta...原创 2019-04-17 16:25:19 · 353 阅读 · 0 评论 -
降维的方法有哪些?
1.PCA降维2SVD降维原创 2019-01-14 20:35:47 · 2047 阅读 · 0 评论 -
条件概率
一、定义条件概率是指事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为:P(A|B),读作“在B的条件下A的概率”。若只有两个事件A,B,那么, P(A∣B)=P(AB)P(B)P(A|B) = \frac {P(AB)}{P(B)}P(A∣B)=P(B)P(AB)。二、公式P(A∣B)=P(AB)P(B)P(A|B) = \frac {P(AB)}{P(B)}P(A∣B)=...原创 2018-10-06 18:05:58 · 1637 阅读 · 0 评论 -
目标函数
一、目标函数的分类1.回归的目标函数均方差(MSE)损失 MSE=−p(x)log(q(x))MSE=−p(x)log(q(x))MSE = -p(x)log(q(x))2.分类的目标函数交叉熵损失 CE=(yi−yj)2CE=(yi−yj)2CE = (y_{i} - y_{j})^2 ...原创 2018-09-05 16:02:35 · 2214 阅读 · 0 评论 -
PageRank算法的前世今生
一、算法定义PageRank,网页排名,又称网页级别、Google左侧排名或佩奇排名,是一种由 [1] 根据网页之间相互的超链接计算的技术,而作为网页排名的要素之一,以Google公司创办人拉里·佩奇(Larry Page)之姓来命名。Google用它来体现网页的相关性和重要性,在搜索引擎优化操作中是经常被用来评估网页优化的成效因素之一。Google的创始人拉里·佩奇和谢尔盖·布林于1998...原创 2018-08-07 13:07:03 · 1509 阅读 · 0 评论 -
关键词抽取
一、关键词抽取分类关键词抽取算法可以分为两类1.使用外部的知识库(1).TF-IDF TF-IDF关键词提取算法就是需要保存每个词的IDF值作为外部知识库 (2).LDA模型2.不适用外部知识库(1).TextRank (2).PageRank...原创 2018-07-11 20:44:24 · 795 阅读 · 0 评论 -
朴素贝叶斯算法的前世今生
一、基本概念1.分类原理通过某对象的先验概率,利用贝叶斯公式,计算出其后验概率。即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。2.贝叶斯公式P(A|B)=P(B|A)∗P(A)P(B)P(A|B)=P(B|A)∗P(A)P(B)P(A|B) = \frac{P(B|A)*P(A)}{P(B)}(1).其中P(A)为先验概率:先验概率(prior...原创 2018-07-03 15:03:49 · 1985 阅读 · 0 评论 -
用Excel理解梯度下降:简单到拍案叫绝
雷锋网按:本文作者为Jahnavi Mahanta,前American Express(美国运通公司)资深机器学习工程师、深度学习在线教育网站Deeplearningtrack联合创始人。Jahnavi Mahanta:对算法的作用建立直觉性的理解——在我刚入门机器学习的时候,这让我觉得非常困难。不仅仅是因为理解数学理论和符号本身不容易,也因为它很无聊。我到线上教程里找办法,但里面只有公式转载 2017-07-20 18:56:13 · 1211 阅读 · 0 评论 -
人工智能之机器学习路线图
1. 引言也许你和这个叫『机器学习』的家伙一点也不熟,但是你举起iphone手机拍照的时候,早已习惯它帮你框出人脸;也自然而然点开今日头条推给你的新闻;也习惯逛淘宝点了找相似之后货比三家;亦或喜闻乐见微软的年龄识别网站结果刷爆朋友圈。恩,这些功能的核心算法就是机器学习领域的内容。套用一下大神们对机器学习的定义,机器学习研究的是计算机怎样模拟人类的学习行为,以获取新的知识或技能,转载 2017-02-04 11:13:59 · 332 阅读 · 0 评论 -
svm的简单理解
SVM是一种训练机器学习的算法,可以用于解决分类和回归问题,同时还使用了一种称之为kernel trick的技术进行数据的转换,然后再根据这些转换信息,在可能的输出之中找到一个最优的边界。简单来说,就是做一些非常复杂的数据转换工作,然后根据预定义的标签或者输出进而计算出如何分离用户的数据。原创 2017-02-22 16:25:25 · 2119 阅读 · 0 评论 -
什么是机器学习
- 1+1等于几 ?- 50- 傻x,多了- 1+2等于几?- 20- 傻x,多了- 3+4等于几- 7- 傻x,对了- 6+9等于几- 13- 傻x,少了很多很多次以后……- 2+2等于几- 4- 4+5等于几- 9这就是机器学习,准确来说是最常见的一种,监督学习。最开始的几步是对于模型的训练原创 2017-02-02 16:55:22 · 270 阅读 · 0 评论 -
支持向量机SVM推导及求解过程
支持向量机是属于原创性、非组合的具有明显直观几何意义的分类算法,具有较高的准确率。 使用SVM算法的思路:(1)简单情况,线性可分情况,把问题转化为一个凸优化问题,可以用拉格朗日乘子法简化,然后用既有的算法解决;(2)复杂情况,线性不可分,用核函数将样本投射到高维空间,使其变成线性可分的情形,利用核函数来减少高纬度计算量。 一、SVM相关基本概念原创 2017-02-23 15:21:52 · 767 阅读 · 0 评论