和为n的连续自然数序列(转)

题目:输入一个正数n,输出所有和为n的连续正数序列,例如输入15,由于1+2+3+4+5=4+5+6=7+8=15,所以输出3个连续序列1-5、4-6、7-8。

思路1:我们用两个数small和big分别表示序列的最小值和最大值。首先把small初始化为1,big初始化为2,如果从small到big的序列的和大于n的话,我们向右移动small,相当于从序列中去掉较小的数字。如果从small到big的序列的和小于n的话,我们向右移动big,相当于向序列中添加big的下一个数字,一直到small等于(1+n)/2,因为序列中至少要有两个数字。

void FindContinuousSequence(int n)   
{   
    assert(n >= 3);   
   
    int small = 1;    
    int big = 2;   
    int mid = (1+n)/2;   
    int sum = small+big;   
    while(small < mid)   
    {   
        if(sum == n)   
        {   
            cout << small << "-" << big << endl;   
            sum -= small;   
            small++;   
        }   
        else if(sum > n)   
        {   
            sum -= small;   
            small++;   
        }   
        else   
        {   
            big++;   
            sum += big;   
        }   
    }   
}   

思路2:按照等差数列计算,连续数列有i个数,首数为x,和为n=(2x+i-1)*i/2,解得x=(2n/i-i+1)/2,注意x>0且i为整数,可得i的取值范围为[2, sqrt(2*n)],又x为整数,故2n/i为整数,且(2n/i-i+1)/2为整数。

void FindContinuousSequence(int n)   
{   
    assert(n >= 3);   
       
    for(int i=2; i<=sqrt(2*n); i++)   
    {   
        if((2*n)%i == 0)   
        {   
            int temp = 2*n/i-i+1;   
            if(temp%2 == 0)   
            {   
                cout << temp/2 << "-" << temp/2+i-1 << endl;   
            }   
        }   
    }   
}   


扩展题目1:某些数n并不能表示为一系列连续的自然数之和,例如4、8、32就不行,那么这样的数有什么规律呢?能否证明你的结论?

思路:2的整数次幂不能表示为一系列连续的自然数之和,如上思路2所示,若要2n/i为整数,则i必为偶数,而当i为偶数时,2n/i-i为偶数,2n/i-i+1为奇数,此时(2n/i-i+1)/2就不可能为整数了,即不存在连续自然数之和了,故命题得证。










### 计算带有前缀连续自然数 为了计算具有前缀连续自然数序列的求方法,可以通过以下方式理解: #### 前缀的概念 前缀是指在一个数组中,第 \( i \) 项的前缀表示从数组的第一项到第 \( i \) 项所有元素的总。对于自然数序列来说,假设有一个长度为 \( n \)自然数序列 \( a_1, a_2, ..., a_n \),其对应的前缀数组 \( S \) 定义如下: \[ S[i] = a_1 + a_2 + ... + a_i \] 因此,任意子区间 \( [l,r] \) (\( l \leq r \))内的元素可以用两个前缀相减得出: \[ sum(l, r) = S[r] - S[l-1] \] 其中,当 \( l=0 \) 时,定义 \( S[-1]=0 \)[^1]。 #### 连续自然数公式的推导 对于一个由第一个自然数 \( a \) 开始、共有 \( n \)连续自然数构成的序列而言,该序列可以利用等差数列求公式获得: \[ Sum = \frac{n}{2}(a+(a+n-1))=\frac{(2*a+n-1)*n}{2} \]。 #### 使用前缀优化查询过程 通过预先构建好整个序列的前缀表,在面对多次询问某段区间的数值加总之类的问题时能够快速给出答案而无需重复累加操作,从而大大提高了效率。 ```python def prefix_sum(n): # 构建前缀列表 pre_sums = [0]*(n+1) for i in range(1,n+1): pre_sums[i] = pre_sums[i-1]+i return pre_sums def get_range_sum(pre_sums,l,r): """获取指定范围内[l,r]内所有数字的""" return pre_sums[r]-pre_sums[l-1] if __name__ == "__main__": N = int(input("请输入要处理的最大自然数N:")) pre_sums = prefix_sum(N) while True: try: L,R = map(int,input(f"输入想要知道哪一段闭合区间[{1},{N}]之间的(按Ctrl+C退出程序)").split()) if not (1<=L<=R<=N): raise ValueError() print(get_range_sum(pre_sums,L,R)) except KeyboardInterrupt: break except Exception as e: print('错误:',str(e),'.请重新尝试.') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值