题目:输入一个正数 n,输出所有和为 n连续正数序列。
例如输入 15,由于 1+2+3+4+5=4+5+6=7+8=15,所以输出 3 个连续序列 1-5、4-6和 7-8。
方法一:首先判断n最多能由几个连续数的和得到,假设最多由M个连续数和得到,那么M(M+1)/2=n这样很容易求得
M=(sqrt(8n+1)-1)/2。
由题义可知,n至少需要由两个连续数和得来,所以外层循环从2到M
那么是不是2到M中每一种情况都存在连续数和等于n呢?显然不是
假设n由k个连续数和得来,2<=k<M,设这k个数分别为a1,a2,...,ak.
那么
a1+a2+...+ak=n
因为连续,所以
a1+(a1+1)+(a1+2)+...+(a1+k-1)=n
即
k*a1+k(k-1)/2=n
这样就可以求得
a1=(n-k(k-1)/2)/k
a1即为连续数中的最小值,只有在a1为整数的情况下才会符合要求,即
(n-k(k-1)/2)%k==0
时才符合要求。
对符合要求的a1连续打印k个递增(公差为1)的值即可。
代码如下:
#include <iostream>
#include <cmath>
using namespace std;
void Sequence1(int n)
{
int M = (sqrt(8*n+1)-1)/2;
for(int i = 2; i <= M; i++)
{
if((n-(i-1)*i/2)%i == 0)
{
int nMin = (n-(i-1)*i/2)/i;
for(int j = 0; j < i; j++)
{
cout << nMin++ << " ";
}
cout << endl;
}
}
}
测试代码为:
int main()
{
Sequence1(15);
return 0;
}
方法二:可用两个数 small 和 big分别表示序列的最小值和最大值。首先把 small 初始化为 1,big 初始化为 2。如果从 small到 big 的序列的和大于 n 的话,我们向右移动 small,相当于从序列中去掉较小的数字。如果从 small 到 big 的序列的和小于 n 的话,我们向右移动 big,相当于向序列中添加 big 的下一个数字。一直到 small 等于(1+n)/2,因为序列至少要有两个数字。
该方法二思想来源于July的blog,直接贴代码:
void Sequence2(int n)
{
if(n < 3)
return;
int nSmall = 1;
int nBig = 2;
int nMiddle = (n+1)/2;
int nSum = nSmall+nBig;
while(nSmall < nMiddle)
{
if(nSum == n)
{
for(int i = nSmall; i <= nBig; i++)
{
cout << i << " ";
}
cout << endl;
}
while(nSum > n)
{
nSum -= nSmall;
nSmall++;
if(nSum == n)
{
for(int i = nSmall; i <= nBig; i++)
{
cout << i << " ";
}
cout << endl;
}
}
nBig++;
nSum += nBig;
}
}
测试代码如下:
int main()
{
Sequence2(15);
return 0;
}
PS:方法一用到的是连续的性质,他是一个等差数列,数学推导较多,但是理解后比较好实现,更重要的是,此方法针对n很大时效率必方法二要高。