和为 n 连续正数序列

题目:输入一个正数 n,输出所有和为 n连续正数序列。

例如输入 15,由于 1+2+3+4+5=4+5+6=7+8=15,所以输出 3 个连续序列 1-54-6 7-8

 

方法一:首先判断n最多能由几个连续数的和得到,假设最多由M个连续数和得到,那么M(M+1)/2=n这样很容易求得

M=(sqrt(8n+1)-1)/2。

由题义可知,n至少需要由两个连续数和得来,所以外层循环从2到M

那么是不是2到M中每一种情况都存在连续数和等于n呢?显然不是

假设n由k个连续数和得来,2<=k<M,设这k个数分别为a1,a2,...,ak.

那么

       a1+a2+...+ak=n

因为连续,所以

       a1+(a1+1)+(a1+2)+...+(a1+k-1)=n

      k*a1+k(k-1)/2=n

这样就可以求得

      a1=(n-k(k-1)/2)/k

a1即为连续数中的最小值,只有在a1为整数的情况下才会符合要求,即

      (n-k(k-1)/2)%k==0

时才符合要求。

对符合要求的a1连续打印k个递增(公差为1)的值即可。

代码如下:

#include <iostream>
#include <cmath>
using namespace std;

void Sequence1(int n)
{
	int M = (sqrt(8*n+1)-1)/2;
	for(int i = 2; i <= M; i++)
	{
		if((n-(i-1)*i/2)%i == 0)
		{
			int nMin = (n-(i-1)*i/2)/i;
			for(int j = 0; j < i; j++)
			{
				cout << nMin++ << " ";
			}
			cout << endl;
		}
	}
}


测试代码为:

 

int main()
{
	Sequence1(15);
	return 0;
}


 

方法二:可用两个数 small 和 big分别表示序列的最小值和最大值。首先把 small 初始化为 1,big 初始化为 2。如果从 small到 big 的序列的和大于 n 的话,我们向右移动 small,相当于从序列中去掉较小的数字。如果从 small 到 big 的序列的和小于 n 的话,我们向右移动 big,相当于向序列中添加 big 的下一个数字。一直到 small 等于(1+n)/2,因为序列至少要有两个数字。

该方法二思想来源于July的blog,直接贴代码:

void Sequence2(int n)
{
	if(n < 3)
		return;

	int nSmall = 1;
	int nBig = 2;
	int nMiddle = (n+1)/2;
	int nSum = nSmall+nBig;

	while(nSmall < nMiddle)
	{
		if(nSum == n)
		{
			for(int i = nSmall; i <= nBig; i++)
			{
				cout << i << " ";
			}
			cout << endl;
		}

		while(nSum > n)
		{
			nSum -= nSmall;
			nSmall++;

			if(nSum	== n)
			{
				for(int i = nSmall; i <= nBig; i++)
				{
					cout << i << " ";
				}
				cout << endl;
			}
		}

		nBig++;
		nSum += nBig;
	}
}


测试代码如下:

int main()
{
	Sequence2(15);
	return 0;
}


PS:方法一用到的是连续的性质,他是一个等差数列,数学推导较多,但是理解后比较好实现,更重要的是,此方法针对n很大时效率必方法二要高。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值