题目背景
红太阳幼儿园的小朋友们开始分糖果啦!
题目描述
红太阳幼儿园有 n 个小朋友,你是其中之一。保证 𝑛≥2。
有一天你在幼儿园的后花园里发现无穷多颗糖果,你打算拿一些糖果回去分给幼儿园的小朋友们。
由于你只是个平平无奇的幼儿园小朋友,所以你的体力有限,至多只能拿 R 块糖回去。
但是拿的太少不够分的,所以你至少要拿 L 块糖回去。保证 n≤L≤R。
也就是说,如果你拿了 k 块糖,那么你需要保证 L≤k≤R。
如果你拿了 k 块糖,你将把这 k 块糖放到篮子里,并要求大家按照如下方案分糖果:只要篮子里有不少于 n 块糖果,幼儿园的所有 n 个小朋友(包括你自己)都从篮子中拿走恰好一块糖,直到篮子里的糖数量少于 n 块。此时篮子里剩余的糖果均归你所有——这些糖果是作为你搬糖果的奖励。
作为幼儿园高质量小朋友,你希望让作为你搬糖果的奖励的糖果数量(而不是你最后获得的总糖果数量!)尽可能多;因此你需要写一个程序,依次输入 n,L,R,并输出你最多能获得多少作为你搬糖果的奖励的糖果数量。
输入格式
输入一行,包含三个正整数 n,L,R,分别表示小朋友的个数、糖果数量的下界和上界。
输出格式
输出一行一个整数,表示你最多能获得的作为你搬糖果的奖励的糖果数量。
输入样例1
7 16 23
输出样例1
6
输入样例2
10 14 18
输出样例2
8
说明/提示
【样例解释 #1】
拿 k=20 块糖放入篮子里。
篮子里现在糖果数 20≥n,因此所有小朋友获得一块糖;
篮子里现在糖果数变成 13≥n,因此所有小朋友获得一块糖;
篮子里现在糖果数变成 6<n,因此这 6 块糖是作为你搬糖果的奖励。
容易发现,你获得的作为你搬糖果的奖励的糖果数量不可能超过 6 块(不然,篮子里的糖果数量最后仍然不少于 n,需要继续每个小朋友拿一块),因此答案是 6。
【样例解释 #2】
容易发现,当你拿的糖数量 k 满足 L≤k≤R 时,所有小朋友获得一块糖后,剩下的 k−10 块糖总是作为你搬糖果的奖励的糖果数量,因此拿 k=18 块是最优解,答案是 8。
【数据范围】
正常算法(90分):
#include<bits/stdc++.h>
using namespace std;
int n,l,r,ans;//主函数内分配空间较少,容易炸
int main()
{
scanf("%d%d%d",&n,&l,&r);//省时
for(int i=l;i<=r;i++)
{
ans=max(ans,i%n);
}
printf("%d",ans);
return 0;
}
时间复杂度:O(R-L) ,但是某个测试点还是超时了。
AC思路:
使用余数性质,可能会出现以下2种情况:
1:L和R在一个周期里,什么叫在一个周期里呢?就是在L~R的周期里,要存在一个数,除以n的余数要等于n-1。
2.L和R不在一个周期里
L肯定比R大,所以除以n的余数的最大值就是R-1
有人可能没听懂,那直接上代码吧!(我其实也不知道自己在写什么)
#include <bits/stdc++.h>
using namespace std;
int n,l,r;
int main()
{
scanf("%d%d%d",&n&l&r);
if(R/n>L/n)
{
cout<<n-1;
}
else
{
cout<<r%n;
}
return 0;
}