继上一篇的博客,开启第二个篇章,mongodb的基本操作,废话不多说直接来看,但建议大家最好实际的去操作。
MongoDB 数据类型:{
下表为MongoDB中常用的几种数据类型。
数据类型 描述
String 字符串。存储数据常用的数据类型。在 MongoDB 中,UTF-8 编码的字符串才是 合法的。
Integer 整型数值。用于存储数值。根据你所采用的服务器,可分为 32 位或 64 位。
Boolean 布尔值。用于存储布尔值(真/假)。
Double 双精度浮点值。用于存储浮点值。
Min/Max keys 将一个值与 BSON(二进制的 JSON)元素的最低值和最高值相对比。
Arrays 用于将数组或列表或多个值存储为一个键。
Timestamp 时间戳。记录文档修改或添加的具体时间。
Object 用于内嵌文档。
Null 用于创建空值。
Symbol 符号。该数据类型基本上等同于字符串类型,但不同的是,它一般用于采用特殊 符号类型的语言。
Date 日期时间。用 UNIX 时间格式来存储当前日期或时间。你可以指定自己的日期时 间:创建 Date 对象,传入年月日信息。
Object ID 对象 ID。用于创建文档的 ID。
Binary Data 二进制数据。用于存储二进制数据。
Code 代码类型。用于在文档中存储 JavaScript 代码。
Regular expression 正则表达式类型。用于存储正则表达式。
}
1.数据库操作
name :'用户名',
age : 11,
titles:{
title1 : '标题1',
title2 : '标题2',
num : 2
}
})
document=({title: 'MongoDB 教程',
description: 'MongoDB 是一个 Nosql 数据库',
by: '菜鸟教程',
url: 'http://www.runoob.com',
tags: ['mongodb', 'database', 'NoSQL'],
likes: 100
});
执行插入操作:
db.col.insert(document)
如果指定 _id 字段,则会替换id对应的文档。
db.collection.update(
<query>,
<update>,
{
upsert: <boolean>,
multi: <boolean>,
writeConcern: <document>
}
)
参数说明:
query : update的查询条件,类似sql update查询内where后面的。
update : update的对象和一些更新的操作符(如$,$inc...)等,也可以理解为sql update查询内
set后面的
save() 方法通过传入的文档来替换已有文档。语法格式如下:
db.collection.save(
<document>,
{
writeConcern: <document>
}
)
参数说明:
document : 文档数据。
writeConcern :可选,抛出异常的级别。
例:
db.col.save({
"_id" : ObjectId("56064f89ade2f21f36b03136"),
"title" : "MongoDB",
"description" : "MongoDB 是一个 Nosql 数据库",
"by" : "Runoob",
"url" : "http://www.runoob.com",
"tags" : [
"mongodb",
"NoSQL"
],
"likes" : 110
})
<query>,
{
justOne: <boolean>,
writeConcern: <document>
}
)
参数说明:
query :(可选)删除的文档的条件。
justOne : (可选)如果设为 true 或 1,则只删除一个文档。
writeConcern :(可选)抛出异常的级别。
db.col.remove({'title':'MongoDB 教程'}) 会删除所有匹配条件的语句,如果你只想删除第一条找到的记录可以
设置 justOne 为 1。如果你想删除所有数据,可以使用以下方式(类似常规 SQL 的 truncate 命令)
find() 方法以非结构化的方式来显示所有文档。
如果你需要以格式化的方式来读取数据,可以使用 pretty() 方法,语法格式如下:
db.test.find().pretty(),除了 find() 方法之外,还有一个 findOne() 方法,它只返回一个文档。
如果你熟悉常规的 SQL 数据,通过下表可以更好的理解 MongoDB 的条件语句查询:
操作 格式 范例
等于 {<key>:<value>} db.col.find({"by":"菜鸟教程"}).pretty()
小于 {<key>:{$lt:<value>}} db.col.find({"likes":{$lt:50}}).pretty()
小于或等于 {<key>:{$lte:<value>}} db.col.find({"likes":{$lte:50}}).pretty()
大于 {<key>:{$gt:<value>}} db.col.find({"likes":{$gt:50}}).pretty()
大于或等于 {<key>:{$gte:<value>}} db.col.find({"likes":{$gte:50}}).pretty()
不等于 {<key>:{$ne:<value>}} db.col.find({"likes":{$ne:50}}).pretty()
MongoDB 的 find() 方法可以传入多个键(key),每个键(key)以逗号隔开,及常规 SQL 的 AND 条件。
语法格式如下:
db.col.find({key1:value1, key2:value2}).pretty()
db.col.find({"by":"菜鸟教程", "title":"MongoDB 教程"}).pretty()
MongoDB OR 条件语句使用了关键字 $or,语法格式如下:
db.col.find(
{
$or: [
{key1: value1}, {key2:value2}
]
}
).pretty()
例:db.col.find({$or:[{"by":"菜鸟教程"},{"title": "MongoDB 教程"}]}).pretty()
以下实例演示了 AND 和 OR 联合使用,类似常规 SQL 语句为:
'where likes>50 AND (by = '菜鸟教程' OR title = 'MongoDB 教程')'
db.col.find({"likes": {$gt:50}, $or: [{"by": "菜鸟教程"},{"title": "MongoDB 教程"}]}).pretty()
$type操作符是基于BSON类型来检索集合中匹配的数据类型,并返回结果。
db.col.find({"title" : {$type : 2}})
$type有一张类型与数值的对应表:
Double 1
String 2
Object 3
Array 4
Binary data 5
Undefined 6 已废弃。
Object id 7
Boolean 8
Date 9
a.如果你需要在MongoDB中读取指定数量的数据记录,可以使用MongoDB的Limit方法,limit()方法
db.COLLECTION_NAME.find().limit(NUMBER) : db.col.find({},{"title":1,_id:0}).limit(2)
b.我们除了可以使用limit()方法来读取指定数量的数据外,还可以使用skip()方法来跳过指定数量的
db.test.find().skip(num) : num默认0,不跳过任何数据。
db.COLLECTION_NAME.find().limit(NUMBER).skip(NUMBER) limit和skip联合使用
如分页查询db.test.find().skip((page_1)*pagesize).limit(pagesize)
并使用 1 和 -1 来指定排序的方式,其中 1 为升序排列,而-1是用于降序排列。
db.COLLECTION_NAME.find().sort({KEY:1}) : db.col.find({},{"title":1,_id:0}).sort({"likes":-1})
注: 如果没有指定sort()方法的排序方式,默认按照文档的升序排列(文档是有序的)
表达式 描述 实例
$sum 计算总和。 db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$sum : "$likes"}}}])
$avg 计算平均值 db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$avg : "$likes"}}}])
$min 获取集合中所有文档对应值得最小值。 db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$min : "$likes"}}}])
$max 获取集合中所有文档对应值得最大值。 db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$max : "$likes"}}}])
$push 在结果文档中插入值到一个数组中。 db.mycol.aggregate([{$group : {_id : "$by_user", url : {$push: "$url"}}}])
$addToSet 在结果文档中插入值到一个数组中,但不创建副本。 db.mycol.aggregate([{$group : {_id : "$by_user", url : {$addToSet : "$url"}}}])
$first 根据资源文档的排序获取第一个文档数据。 db.mycol.aggregate([{$group : {_id : "$by_user", first_url : {$first : "$url"}}}])
$last 根据资源文档的排序获取最后一个文档数据 db.mycol.aggregate([{$group : {_id : "$by_user", last_url : {$last : "$url"}}}])
9.管道:第一版写的管道只是很简单的应用,我自己也感觉不好用。我个人认为这是一个很重要的东西,在管道中经过一层一层的过滤最终找出你需要的条件。
管道的概念:
管道在Unix和Linux中一般用于将当前命令的输出结果作为下一个命令的参数。
MongoDB的聚合管道将MongoDB文档在一个管道处理完毕后将结果传递给下一个管道处理。管道操作是
可以重复的,(这里就看出管道的作用是进行多次过滤,并且可以嵌套多个管道)
表达式:处理输入文档并输出。表达式是无状态的,只能用于计算当前聚合管道的文档,不能处理其它的文档。(只能过滤上一层管道处理后的结果,所以在设计管道时,有2种选择,1.在面对数据量不是很大时,可以从松到严,选出更多你想要的数据,2.在面对数据量特大时,过滤条件要从严到松,因为过滤全部都在内存中进行,特别耗内存,选出最符合条件的数据)
这里我们介绍一下聚合框架中常用的几个操作:
$project:修改输入文档的结构。可以用来重命名、增加或删除域,也可以用于创建计算结果以及嵌套文档。
(简单说就是控制要显示的文档格式,对比于sql就是显示哪些列名)
$match:用于过滤数据,只输出符合条件的文档。$match使用MongoDB的标准查询操作。
$limit:用来限制MongoDB聚合管道返回的文档数。
$skip:在聚合管道中跳过指定数量的文档,并返回余下的文档。
$unwind:将文档中的某一个数组类型字段拆分成多条,每条包含数组中的一个值。
$group:将集合中的文档分组,可用于统计结果。
$sort:将输入文档排序后输出。
$geoNear:输出接近某一地理位置的有序文档。 (Mongodb 地理位置索引)
管道操作符实例:
1、$project实例
db.article.aggregate(
{ $project : {
title : 1 ,
author : 1 ,
}}
);
显示的文档只会显示title,author这两个键,默认情况下id是被包含的,如果不想要id,可以添加这一行_id:0
db.article.aggregate(
{ $project : {
_id : 0 ,
title : 1 ,
author : 1
}})
2.$match实例
db.articles.aggregate( [
{ $match : { score : { $gt : 70, $lte : 90 } } },
{ $group: { _id: null, count: { $sum: 1 } } }
] );
$match用于获取分数大于70小于或等于90记录,然后将符合条件的记录送到下一阶段$group管道操作符进行处
理。db.agg.aggregate({$project:{_id:0,title:1,age:1,url:1}},{$match:{age:{$gt:20,$lt:26}}},{$limit:2})
3.$skip实例
db.article.aggregate({ $skip : 5 });
经过$skip管道操作符处理后,前五个文档被"过滤"掉。
db.agg.aggregate({$match:{age:{$gt:20,$lt:26}}},{$skip:2})
1.MongoDB 关系:
分为两种:
a.嵌入式关系 ,将有关系的数据保存在一个文档中:这种数据结构的缺点是,如果用户和用户地址
在不断增加,数据量不断变大,会影响读写性能。
b.引用式关系 ,在一个文档中引用另外一个或多个文档的id,这样会造成,2次查询
例如用户和用户地址的关系,是一对多:
a.使用嵌入式关系:
"_id":ObjectId("52ffc33cd85242f436000001"),
"contact": "987654321",
"dob": "01-01-1991",
"name": "Tom Benzamin",
"address": [
{
"building": "22 A, Indiana Apt",
"pincode": 123456,
"city": "Los Angeles",
"state": "California"
},
{
"building": "170 A, Acropolis Apt",
"pincode": 456789,
"city": "Chicago",
"state": "Illinois"
}]
}
}
}
以上数据保存在单一的文档中,可以比较容易的获取和维护数据。 你可以这样查询用户的地址:
db.users.findOne({"name":"Tom Benzamin"},{"address":1})
b.引用式关系是设计数据库时经常用到的方法,这种方法把用户数据文档和用户地址数据文档分开,
通过引用文档的 id 字段来建立关系。
{
"_id":ObjectId("52ffc33cd85242f436000001"),
"contact": "987654321",
"dob": "01-01-1991",
"name": "Tom Benzamin",
"address_ids": [
ObjectId("52ffc4a5d85242602e000000"),
ObjectId("52ffc4a5d85242602e000001")
]
}
以上实例中,用户文档的 address_ids 字段包含用户地址的对象id(ObjectId)数组。我们可以读取这些用户地址
的对象id(ObjectId)来获取用户的详细地址信息。这种方法需要两次查询,第一次查询用户地址的对象id
(ObjectId),第二次通过查询的id获取用户的详细地址信息:
var result = db.users.findOne({"name":"Tom Benzamin"},{"address_ids":1})
var addresses = db.address.find({"_id":{"$in":result["address_ids"]}}