神经网络进行mnist数据集识别总结

1、单个隐藏层神经网络构建:

程序:

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
print ("dajidali")
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets('data/',one_hot=True)

//数据声明

numClasses=10
inputSize=784
numHiddenUnits=80
trainingIteratoins=50000
batchSize=100

变量声明
X=tf.placeholder(tf.float32,[None,inputSize])
y=tf.placeholder(tf.float32,[None,numClasses])

W1=tf.Variable(tf.truncated_normal([inputSize,numHiddenUnits],stddev=0.1))
B1=tf.Variable(tf.constant(0.1),[numHiddenUnits])
W2=tf.Variable(tf.truncated_normal([numHiddenUnits,numClasses],stddev=0.1))
B2=tf.Variable(tf.constant(0.1),[numClasses])

结构搭建

hiddenLayerOutput=tf.matmul(X,W1)+B1
hiddenLayerOutput=tf.nn.relu(hiddenLayerOutput)
finalOutput=tf.matmul(hiddenLayerOutput,W2)+B2
finalOutput=tf.nn.relu(finalOutput)

训练迭代

loss=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=finalOutput))
opt=tf.train.GradientDescentOptimizer(learning_rate=.1).minimize(loss)

correct_prediction=tf.equal(tf.argmax(finalOutput,1),tf.argmax(y,1))
accuracy=tf.reduce_mean(tf.cast(correct_prediction,"float"))
init = tf.initialize_all_variables()
sess=tf.InteractiveSession()
sess.run(init)//初始化
for i in range(trainingIteratoins):
    batch=mnist.train.next_batch(batchSize)
    batchInput=batch[0]
    batchLabels=batch[1]
    _, trainingLoss=sess.run([opt,loss],feed_dict={X: batchInput,y: batchLabels})
    if i%1000==0:
        train_accuracy=accuracy.eval(session=sess,feed_dict={X:batchInput,y:batchLabels})
        print("step %d, training accuracy %g"%(i,train_accuracy))
batch = mnist.test.next_batch(batchSize)
testAccuracy = sess.run(accuracy, feed_dict={X:batch[0], y: batch[1]})
print("test accuracy %g"%(testAccuracy))

结果比对:1、numHiddenUnits=50,trainingIteratoins=10000时                

                                          

                2、numHiddenUnits=80,trainingIteratoins=50000

                                          

精度有所提升。

2、2个隐藏层数

                                         

          从第8000次开始训练精度达到很高的标准。

3、构建卷积神经网络在mnist数据集做训练

程序:

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import random
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

print ("dajidali")

tf.reset_default_graph()
sess=tf.InteractiveSession()

numHiddenUnits1=50
numHiddenUnits2=80
trainingIteratoins=5000
batchSize=50

X=tf.placeholder("float",shape=[None,28,28,1])
y_=tf.placeholder("float",shape=[None,10])

W_conv1=tf.Variable(tf.truncated_normal([5,5,1,32],stddev=0.1))
b_conv1=tf.Variable(tf.constant(0.1,shape=[32]))

h_conv1=tf.nn.conv2d(input=X, filter=W_conv1, strides=[1,1,1,1], padding='SAME')+b_conv1
h_conv1=tf.nn.relu(h_conv1)
h_pool1=tf.nn.max_pool(h_conv1,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

def conv2d(x, W):
    return tf.nn.conv2d(input=x, filter=W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

W_conv2=tf.Variable(tf.truncated_normal([5,5,32,64],stddev=0.1))
b_conv2=tf.Variable(tf.constant(0.1,shape=[64]))
h_conv2=tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)
h_pool2=max_pool_2x2(h_conv2)


W_fc1=tf.Variable(tf.truncated_normal([7*7*64,1024],stddev=0.1))
b_fc1=tf.Variable(tf.constant(0.1,shape=[1024]))
h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64])
h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)

keep_prob=tf.placeholder("float")
h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob)

W_fc2=tf.Variable(tf.truncated_normal([1024,10],stddev=0.1))
b_fc2=tf.Variable(tf.constant(0.1,shape=[10]))

y=tf.matmul(h_fc1_drop,W_fc2)+b_fc2

loss=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_,logits=y))
opt=tf.train.AdamOptimizer().minimize(loss)

correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
accuracy=tf.reduce_mean(tf.cast(correct_prediction,"float"))

init =tf.global_variables_initializer()
sess.run(init)
for i in range(trainingIteratoins):
    batch=mnist.train.next_batch(batchSize)
    batchInput=batch[0].reshape([batchSize,28,28,1])
    batchLabels=batch[1]
    if i%100==0:
        train_accuracy=accuracy.eval(session=sess,feed_dict={X:batchInput,y_:batchLabels, keep_prob: 1.0})
        print("step %d, training accuracy %g"%(i,train_accuracy))
    opt.run(session=sess, feed_dict={X: batchInput,y_:batchLabels, keep_prob: 0.5})

batch = mnist.test.next_batch(batchSize)
batchInput=batch[0].reshape([batchSize,28,28,1])
batchLabels=batch[1]
testAccuracy = sess.run(accuracy, feed_dict={X:batchInput, y_: batchLabels,keep_prob: 1.0})
print("test accuracy %g"%(testAccuracy))

训练结果:

  至此mnist数据集上的小练习完成。

### 回答1: 基于Python的卷积神经网络可以非常有效地识别MNIST数据集MNIST是一个手写数字识别的经典数据集,包含了60000个训练样本和10000个测试样本,每个样本是一个28x28像素的灰度图像。 首先,我们需要使用Python的深度学习库Keras来构建卷积神经网络模型。卷积神经网络的核心是卷积层和池化层,这些层能够提取图像的特征。我们可以使用Conv2D函数来添加卷积层,它将输入的图像进行卷积计算。然后,我们可以使用MaxPooling2D函数来添加池化层,它可以对卷积层的输出进行下采样。 其次,我们需要将MNIST数据集进行预处理。我们可以使用Keras提供的工具函数将图像数据规范化到0到1之间,并将标签进行独热编码。这样可以更好地适应卷积神经网络的输入和输出。 接下来,我们可以定义我们的卷积神经网络模型。一个简单的卷积神经网络可以包含几个卷积层和池化层,然后是一个或多个全连接层。我们可以使用Keras的Sequential模型来构建这个模型,并逐层加入卷积层和池化层。 然后,我们需要对模型进行编译和训练。我们可以使用compile函数对模型进行配置,设置损失函数、优化器和评估指标。对于MNIST数据集的分类问题,我们可以选择交叉熵作为损失函数,并使用Adam优化器进行优化。然后,我们可以使用fit函数将模型训练在训练集上进行训练。 最后,我们可以使用训练好的模型对测试集进行预测,并评估模型的准确率。我们可以使用evaluate函数计算模型在测试集上的损失和准确率。 总结来说,通过使用Python的卷积神经网络库Keras,我们可以很容易地构建一个能够识别MNIST数据集的卷积神经网络模型。该模型可以对手写数字图像进行特征提取和分类,并能够给出准确的识别结果。 ### 回答2: 基于Python的卷积神经网络(Convolutional Neural Network, CNN)可以用来识别MNIST数据集MNIST是一个手写数字的图像数据集,包含训练集和测试集,每个图像是28x28的灰度图像。 要使用CNN来识别MNIST数据集,首先需要导入必要的Python库,如TensorFlow和Keras。然后,定义CNN的模型架构。模型可以包含一些卷积层、池化层和全连接层,以及一些激活函数和正则化技术。 接下来,将训练集输入到CNN模型进行训练。训练数据集包含大量有标签的图像和对应的数字标签。通过迭代训练数据集,目标是调整CNN模型的参数,使其能够准确地预测出输入图像的数字标签。 训练完成后,可以使用测试集来评估CNN模型的性能。测试集与训练集是相互独立的,其中包含一些未曾训练过的图像和相应的标签。通过使用CNN模型来预测测试集图像的标签,并将预测结果与实际标签进行比较,可以计算出模型的准确率。 对于MNIST数据集识别,使用CNN相比传统的机器学习算法有许多优势。CNN可以自动提取特征,无需手动设计特征。此外,CNN可以有效地处理图像数据的空间关系和局部模式,能够更好地捕捉图像中的结构信息。这使得CNN在图像识别任务中具有较高的准确率。 总之,基于Python的卷积神经网络可以很好地识别MNIST数据集。通过构建一个CNN模型,从训练数据中学习到的参数可以用来预测测试数据中的图像标签,并通过比较预测结果和实际标签来评估模型的性能。 ### 回答3: 卷积神经网络(CNN)是一种在计算机视觉领域中广泛应用的深度学习模型,其中包括卷积层、池化层和全连接层等不同层级。 在使用Python构建CNN来识别MNIST数据集时,我们需要先从MNSIT数据集中加载图像和标签。接下来,我们可以使用Python的图像处理库将图像转换为适当的格式,以供CNN模型使用。 在卷积层中,我们可以使用Python的数据处理和图像处理库(如NumPy和OpenCV)来实现卷积操作。通过设置合适的滤波器和步幅,我们可以从图像中提取特征。卷积层的输出将通过使用ReLU等激活函数来进行非线性变换。 接下来是池化层,它有助于减小特征图的大小并减少计算量。在这一步骤中,我们可以使用Python的库(如NumPy)来实现最大池化或平均池化操作。 在完成卷积和池化操作后,我们将使用全连接层,将具有多个特征图的输出连接成一个向量。然后,我们可以使用Python的深度学习框架(如TensorFlow或Keras),通过神经网络的反向传播来训练CNN模型。 在训练过程中,我们可以使用Python的库(如NumPy)来进行损失函数的计算和梯度下降等操作。通过不断迭代优化CNN的权重和偏差,我们可以逐步提高模型在MNIST数据集上的准确性。 最后,我们可以使用训练好的CNN模型对新的MNIST图像进行分类预测。通过输入图像到CNN模型中,我们可以获取每个类别的概率分布,然后选择概率最高的类别标签作为预测结果。 总之,基于Python的卷积神经网络(CNN)的步骤是:加载MNIST数据集进行卷积层、池化层和全连接层操作、使用深度学习框架训练模型,并使用训练好的模型进行分类预测。这样的CNN模型可以在MNIST数据集上实现高精度的数字识别
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值