网络爬虫 (spider) 中 LRU算法的设计与实现

转自:《程序员》 文/ 洪伟铭

cache的所有位置都用双向链表链接起来,当一个位置被命中后,就将通过调整链表的指向将该位置调整到链表的头位置,新加入的内容直接放在链表的头上。这样,在进行过多次查找操作后,最近被命中过的内容就向链表的头移动,而没有被命中的内容就向链表的后面移动。当需要替换时,链表最后的位置就是最近最少被命中的位置,我们只需要将新的内容放在链表前面,淘汰链表最后的位置就是想了LRU算法。

LRU算法的实现

对象设计

对于Cache的每个位置,我们设计一个对象来储存对象的内容,并实现一个双向链表。

其中属性next和prev时双向链表的两个指针,key用于存储对象的键值,value用户存储要cache的对象本身。

我们使用hash算法来从cache中查找对象。

我们使用一个hashmap作为cache,用hashmap的检索机制来实现cache查找;并用head和last两个属性来记录链表的头和尾。并提供put(),getEntry()方法来操作该cache。

算法实现

cache的put()方法可将要缓存的内容放到cache中,在该方法中,对象调用私有方法insert(),将内容放到双向链表的头位置,如果cache满了,则将链表最后的位置淘汰掉:

pubilc boolean put(Object key,Object value){

boolean res = false;

HashLinkEntry en = new HashLinkEntry(key , value);

if(map.isEmpty()) {

this.head = en;

this.last = en;

map.put(en.key,en);

res = true;

} else {

HashLinkEntry point = this.getEntry(key);

if(point = null) {

point.value = value;

} else {

this.insert(en);

res = true;

}

}

return res;

}

private void insert(HashLinkEntry en) {

if(map.size() >= this.maxsize) {

HashLinkEntry lastprev = last.prev;

if(lastprev != null) {

map.remove(last.key);

lastprev.next = null;

last = null;

last = lastprev;

} else {

log.error("hashlist get a null point\n" + this.toString());

}

}

map.put(en.key,en );

ent.next = head;

head.prev = en;

head = en;

}

cache的getEntry()方法可根据输入的内容键值key来查找内容是否存在于cache中,如果命中,这个内容就是最新被使用过的,就需要放到双向链表的头位置。

结束语

LRU算法是cache最常用的算法之一,基于双向链表的实现方式比较容易,并可满足大容量cache的需求,在对系统性能要求越来越高的今天,良好的cache算法有着非常广泛的用途和实现意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值