UVa_10785 - The Mad Numerologist

题意:

对26个大写字母,每个字母都赋一个权值,比如A,J,S权值为1;然后求一个字符串,满足权值和最小(辅音字母和元音字母),字母序列最小(即按照字典序排序)。

思路:

1. 先选择出满足题目要求的元音字母和辅音字母,使权值最小,元音字母序列存储在str[0][220]数组中,辅音字母存储在str[1][220]数组中;

2. 对两个数组排序,得到lexicographically order;

3.两个数组交叉输出,即可得到the numerologists first priority is to keep the vowel and consonant value minimum and then to make the name lexicographically smallest(辅音字母和元音字母权值和最小,字母序列最小)的结果。

代码如下:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;

char vowel[]={'A','U','E','O','I'};
char consonant[]={'J','S','B','K','T','C','L','D','M','V','N','W','F','X','G','P','Y','H','Q','Z','R'};
int cnt[26];
char str[2][220];

void Init()
{
    for(int i=0;i<26;i++){
        if(i==0||i==4||i==8||i==14||i==20) cnt[i]=21;
        else cnt[i]=5;
    }
}
char Select(int n)
{
    if(n%2)
    {
        for(int i=0;i<5;i++){
            if(cnt[vowel[i]-'A']>0) {cnt[vowel[i]-'A']--;return vowel[i];}
        }
    }
    else
    {
        for(int i=0;i<21;i++){
            if(cnt[consonant[i]-'A']>0) {cnt[consonant[i]-'A']--;return consonant[i];}
        }
    }
}
int main()
{
    int N,n,f1,f2;
    scanf("%d",&N);
    for(int i=1;i<=N;i++)
    {
        Init();
        f1=f2=0;
        memset(str[0],'\0',sizeof(str[0]));
        memset(str[1],'\0',sizeof(str[1]));

        scanf("%d",&n);
        for(int j=0;j<n;j++){
            if((j+1)%2) str[0][f1++]=Select(j+1);
            else str[1][f2++]=Select(j+1);
        }
        sort(str[0],str[0]+f1);
        sort(str[1],str[1]+f2);
        printf("Case %d: ",i);
        for(int j=0,f1=0,f2=0;j<n;j++){
            if((j+1)%2) putchar(str[0][f1++]);
            else putchar(str[1][f2++]);
        }
        printf("\n");
    }
	return 0;
}


内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值