pyspark获取和处理RDD数据

本文介绍了如何在pyspark中通过SparkContext的textFile方法获取HDFS数据,处理RDD的基本操作,包括数据类型检查、数据切片、过滤和转换。重点讲解了如何使用lambda表达式和map函数进行数据处理,以及如何谨慎使用collect方法获取大量数据。
摘要由CSDN通过智能技术生成

弹性分布式数据集(RDD)是一组不可变的JVM对象的分布集,可以用于执行高速运算,它是Apache Spark的核心。

在pyspark中获取和处理RDD数据集的方法如下:

1. 首先是导入库和环境配置(本测试在linux的pycharm上完成)

import os
from pyspark import SparkContext, SparkConf
from pyspark.sql.session import SparkSession

os.environ["PYSPARK_PYTHON"]="/usr/bin/python3"

conf = SparkConf().setAppName('test_rdd')
sc = SparkContext('local', 'test', conf=conf)
spark = SparkSession(sc)

2. 然后,提供hdfs分区数据的路径或者分区表名

txt_File = r"hdfs://host:port/apps/hive/warehouse/数据库名.db/表名/分区名/part-m-00029.deflate"  # part-m-00029.deflate
# txt_File = r"hdfs://host:port/apps/hive/warehouse/数据库名.db/表名"  # hive table,即也可直接根据表名读取

3. sc.textFile进行读取,得到RDD格式数据<还可以用 spark.sparkContext.parallelize(dat

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值