---------------------------------------------------------------------------
1. 两个二进制数的异或结果。
按位异或即可。
---------------------------------------------------------------------------
2. 递归函数最终会结束,那么这个函数一定(不定项选择):
1) 使用了局部变量
2) 有一个分支不调用自身
3) 使用了全局变量或者使用了一个或多个参数
2, 3
---------------------------------------------------------------------------
3. 以下函数的结果?
int cal(int x)
{
if(x==0)
return 0;
else
return x+cal(x-1);
}
x*(x+1)/2 (自然数求和)
---------------------------------------------------------------------------
4. 以下程序的结果是什么?
void foo(int * a, int * b)
{
*a = *a+*b;
*b = *a-*b;
*a = *a-*b;
}
void main()
{
int a=1, b=2, c=3;
foo(&a,&b);
foo(&b,&c);
foo(&c,&a);
printf("%d, %d, %d", a,b,c);
}
1, 3, 2
---------------------------------------------------------------------------
5. 下面哪项不是链表优于数组的特点?
1. 方便删除 2. 方便插入 3. 长度可变 4. 存储空间小
4
---------------------------------------------------------------------------
6. T(n) = 25T(n/5)+n^2 的时间复杂度?
O((n^2)*log(n))
注:主定理。
---------------------------------------------------------------------------
7. n 个顶点,m 条边的全连通图,至少去掉几条边才能构成一棵树?
m-(n-1) (n 个顶点的树边的条数为 n-1)
---------------------------------------------------------------------------
8. 正则表达式(01|10|1001|0110)*与下列哪个表达式一样?
1) (0|1)* 2) (01|01)* 3) (01|10)* 4) (11|01)* 5) (01|1)*
3
---------------------------------------------------------------------------
9. 如何减少换页错误?
1) 进程倾向于占用CPU 2) 访问局部性(locality of reference)满足进程要求
3) 进程倾向于占用I/O 4) 使用基于最短剩余时间(shortest remaining time)的调度机制
5) 减少页大小
2 (?)
---------------------------------------------------------------------------
10. 实现两个N*N矩阵的乘法,矩阵由一维数组表示。
void matrix_multiply(int A[], int B[], int result[], int N)
{
for (int i = 0; i < N; ++i)
{
for (int j = 0; j < N; ++j)
{
result[i*N+j] = 0;
}
}
for (int i = 0; i < N; ++i)
{
for (int j = 0; j < N; ++j)
{
for (int k = 0; k < N; ++k)
{
result[i*N+j] += A[i*N+k] * B[k*N+j];
}
}
}
}
/* 略微优化 */
void matrix_multiply(int A[], int B[], int result[], int N)
{
for (int i = 0; i < N * N; i += N)
{
for (int j = 0; j < N; ++j)
{
result[i+j] = 0;
}
}
for (i = 0; i < N * N; i += N)
{
for (j = 0; j < N; ++j)
{
int t = 0;
for (ia = i, ib = j; ib < N * N; ++ia, ib += N)
{
t += a[ia] * b[ib];
}
result[i+j] = t;
}
}
}
---------------------------------------------------------------------------
11. 找到单向链表中间那个元素,如果有两个则取前面一个。
#include <stddef.h>
struct listtype
{
int data;
struct listtype * next;
};
typedef struct listtype * list;
/* Find the middle element of the singly linked list sll. */
list find_middle(list sll)
{
list slow = sll;
list fast = sll;
if (NULL == fast)
{
return NULL;
}
while (1)
{
if (NULL == fast->next || NULL == fast->next->next)
{
return slow;
}
slow = slow->next;
fast = fast->next->next;
/* Prevent that there is a loop in the linked list. */
if (fast == slow)
{
return NULL;
}
}
}
---------------------------------------------------------------------------
12. 长度为 N 的整数数组,找出其中任意(N-1)个乘积最大的那一组,只能用乘法,不可以用除法。要求对算法的时间复杂度和空间复杂度作出分析,不要求写程序。
令这 N 个数的乘积为 P,
1) 如果 P<0,则剔除其中最大的负整数即可;
2) 如果 P=0,
2.1) 若这 N 个数中有且仅有一个为“0”。若其他数之积为正,则剔除“0”;否则剔除任意一个非零数;
2.2) 若这 N 个数中至少有两个为“0”,则随便剔除一个数均可;
3) 如果 P>0,如果有正数,则剔除其中最小的正整数即可;否则,剔除最小的负整数。
时间复杂度:遍历数组,获得正整数个数 cp,负整数个数 cn,0 的个数 cz,需要 O(N) 时间;找被剔除的数最坏情况下需要 O(N) 时间。输出结果需要 O(N) 时间。因此,时间复杂度为 O(N)。
空间复杂度:数组存储需要 O(N) 空间,cp, cn, cz 和被剔除的数的下标各需要 O(1) 空间。因此,空间复杂度为 O(N)。
---------------------------------------------------------------------------