谷歌 2006 上海交大笔试题


---------------------------------------------------------------------------

1. 两个二进制数的异或结果。

    按位异或即可。

---------------------------------------------------------------------------

2. 递归函数最终会结束,那么这个函数一定(不定项选择):
    1) 使用了局部变量
    2) 有一个分支不调用自身
    3) 使用了全局变量或者使用了一个或多个参数

    2, 3

---------------------------------------------------------------------------

3. 以下函数的结果?
int cal(int x)
{
    if(x==0)
        return 0;
    else
        return x+cal(x-1);
}

    x*(x+1)/2 (自然数求和)

---------------------------------------------------------------------------

4. 以下程序的结果是什么?

void foo(int * a, int * b)
{
    *a = *a+*b;
    *b = *a-*b;
    *a = *a-*b;
}

void main()
{
    int a=1, b=2, c=3;
    foo(&a,&b);
    foo(&b,&c);
    foo(&c,&a);
    printf("%d, %d, %d", a,b,c);
}

    1, 3, 2

---------------------------------------------------------------------------

5. 下面哪项不是链表优于数组的特点?
    1. 方便删除 2. 方便插入 3. 长度可变 4. 存储空间小

    4

---------------------------------------------------------------------------

6. T(n) = 25T(n/5)+n^2 的时间复杂度?

    O((n^2)*log(n))
    注:主定理。

---------------------------------------------------------------------------

7. n 个顶点,m 条边的全连通图,至少去掉几条边才能构成一棵树?

    m-(n-1) (n 个顶点的树边的条数为 n-1)

---------------------------------------------------------------------------

8. 正则表达式(01|10|1001|0110)*与下列哪个表达式一样?
    1) (0|1)*  2) (01|01)*   3) (01|10)*   4) (11|01)*   5) (01|1)*

    3

---------------------------------------------------------------------------

9. 如何减少换页错误?
    1) 进程倾向于占用CPU    2) 访问局部性(locality of reference)满足进程要求
    3) 进程倾向于占用I/O    4) 使用基于最短剩余时间(shortest remaining time)的调度机制
    5) 减少页大小

    2 (?)

---------------------------------------------------------------------------

10. 实现两个N*N矩阵的乘法,矩阵由一维数组表示。

void matrix_multiply(int A[], int B[], int result[], int N)
{
    for (int i = 0; i < N; ++i)
    {
        for (int j = 0; j < N; ++j)
        {
            result[i*N+j] = 0;
        }
    }
    for (int i = 0; i < N; ++i)
    {
        for (int j = 0; j < N; ++j)
        {
            for (int k = 0; k < N; ++k)
            {
                result[i*N+j] += A[i*N+k] * B[k*N+j];
            }
        }
    }
}

/* 略微优化 */
void matrix_multiply(int A[], int B[], int result[], int N)
{
    for (int i = 0; i < N * N; i += N)
    {
        for (int j = 0; j < N; ++j)
        {
            result[i+j] = 0;
        }
    }
    for (i = 0; i < N * N; i += N)
    {
        for (j = 0; j < N; ++j)
        {
            int t = 0;
            for (ia = i, ib = j; ib < N * N; ++ia, ib += N)
            {
                t += a[ia] * b[ib];
            }
            result[i+j] = t;
        }
    }
}

---------------------------------------------------------------------------

11. 找到单向链表中间那个元素,如果有两个则取前面一个。

#include <stddef.h>

struct listtype
{
    int data;
    struct listtype * next;
};

typedef struct listtype * list;

/* Find the middle element of the singly linked list sll. */
list find_middle(list sll)
{
    list slow = sll;
    list fast = sll;

    if (NULL == fast)
    {
        return NULL;
    }

    while (1)
    {
        if (NULL == fast->next || NULL == fast->next->next)
        {
            return slow;
        }

        slow = slow->next;
        fast = fast->next->next;

        /* Prevent that there is a loop in the linked list. */
        if (fast == slow)
        {
            return NULL;
        }
    }
}

---------------------------------------------------------------------------

12. 长度为 N 的整数数组,找出其中任意(N-1)个乘积最大的那一组,只能用乘法,不可以用除法。要求对算法的时间复杂度和空间复杂度作出分析,不要求写程序。

    令这 N 个数的乘积为 P,
    1) 如果 P<0,则剔除其中最大的负整数即可;
    2) 如果 P=0,
        2.1) 若这 N 个数中有且仅有一个为“0”。若其他数之积为正,则剔除“0”;否则剔除任意一个非零数;
        2.2) 若这 N 个数中至少有两个为“0”,则随便剔除一个数均可;
    3) 如果 P>0,如果有正数,则剔除其中最小的正整数即可;否则,剔除最小的负整数。

    时间复杂度:遍历数组,获得正整数个数 cp,负整数个数 cn,0 的个数 cz,需要 O(N) 时间;找被剔除的数最坏情况下需要 O(N) 时间。输出结果需要 O(N) 时间。因此,时间复杂度为 O(N)。

    空间复杂度:数组存储需要 O(N) 空间,cp, cn, cz 和被剔除的数的下标各需要 O(1) 空间。因此,空间复杂度为 O(N)。

---------------------------------------------------------------------------
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值