MapReduce执行原理

MapReduce执行任务一般包括输入分片、Map、Shuffle、Reduce等阶段,其执行原理如下图所示:

图片来源于《离线和实时大数据开发实战》

  • 输入分片:在进行Map计算之前,MapReduce会根据输入文件计算输入分片,每个输入分片对应一个Map任务。

  • Map阶段:在Map阶段,各个Map任务会接收到所分配的分片,并调用Map函数,逐行执行并输出键值对。

  • Combiner阶段:Combiner阶段是可选的,其实质也是一种Reduce操作,但它是一个本地化的Reduce操作,主要是在Map计算出的中间文件做一个简单的合并重复键值的操作,可以减少后续的处理和网络传输,但是使用它的原则是Combiner的输出不会影响到Reduce计算的最终输入,例如,如果计算只是求总数、最大值及最小值,可以使用Combiner操作,但是如果做平均值计算使用Combiner,最终的Reduce计算结果就会出错。

  • Shuffle阶段:

    • Map Shuffle:对Map的结果进行分区(partition)、排序(sort)、分割(spill),然后将属于同一分区的输出归并(merge)到一起并写在磁盘上,然后将不同的分区发送给对应的Reduce。
    • Reduce Shuffle:将各个Map输出的同一分区的输出进行归并(merge),然后对合并的结果进行排序(sort),最后交给Reduce进行处理。
  • Reduce阶段:调用Reduce函数。例如对每个键,调用sum逻辑合并value并输出到HDFS。

合并(Combine)和归并(Merge)的区别:对于两个键值对<‘a’, 1>,<‘a’, 1>,如果合并会得到<‘a’, 2>,如果归并会得到<‘a’, <1, 1>>

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GraysonWP

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值