题目描述
给你一个 n * n 矩阵 grid ,矩阵由若干 0 和 1 组成。请你用四叉树表示该矩阵 grid 。
你需要返回能表示矩阵的 四叉树 的根结点。
注意,当 isLeaf 为 False 时,你可以把 True 或者 False 赋值给节点,两种值都会被判题机制 接受 。
四叉树数据结构中,每个内部节点只有四个子节点。此外,每个节点都有两个属性:
val:储存叶子结点所代表的区域的值。1 对应 True,0 对应 False;
isLeaf: 当这个节点是一个叶子结点时为 True,如果它有 4 个子节点则为 False 。
class Node {
public boolean val;
public boolean isLeaf;
public Node topLeft;
public Node topRight;
public Node bottomLeft;
public Node bottomRight;
}
我们可以按以下步骤为二维区域构建四叉树:
1. 如果当前网格的值相同(即,全为 0 或者全为 1),将 isLeaf 设为 True ,将 val 设为网格相应的值,并将四个子节点都设为 Null 然后停止。
2. 如果当前网格的值不同,将 isLeaf 设为 False, 将 val 设为任意值,然后如下图所示,将当前网格划分为四个子网格。
3. 使用适当的子网格递归每个子节点。
四叉树格式:
输出为使用层序遍历后四叉树的序列化形式,其中 null 表示路径终止符,其下面不存在节点。
它与二叉树的序列化非常相似。唯一的区别是节点以列表形式表示 [isLeaf, val] 。
如果 isLeaf 或者 val 的值为 True ,则表示它在列表 [isLeaf, val] 中的值为 1 ;如果 isLeaf 或者 val 的值为 False ,则表示值为 0 。
示例1:
输入:grid = [[0,1],[1,0]]
输出:[[0,1],[1,0],[1,1],[1,1],[1,0]]
解释:此示例的解释如下:
请注意,在下面四叉树的图示中,0 表示 false,1 表示 True 。
示例2:
输入:grid = [[1,1,1,1,0,0,0,0],[1,1,1,1,0,0,0,0],[1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1],[1,1,1,1,0,0,0,0],[1,1,1,1,0,0,0,0],[1,1,1,1,0,0,0,0],[1,1,1,1,0,0,0,0]]
输出:[[0,1],[1,1],[0,1],[1,1],[1,0],null,null,null,null,[1,0],[1,0],[1,1],[1,1]]
解释:网格中的所有值都不相同。我们将网格划分为四个子网格。
topLeft,bottomLeft 和 bottomRight 均具有相同的值。
topRight 具有不同的值,因此我们将其再分为 4 个子网格,这样每个子网格都具有相同的值。
解释如下图所示:
示例 3:
输入:grid = [[1,1],[1,1]]
输出:[[1,1]]
示例 4:
输入:grid = [[0]]
输出:[[1,0]]
示例 5:
输入:grid = [[1,1,0,0],[1,1,0,0],[0,0,1,1],[0,0,1,1]]
输出:[[0,1],[1,1],[1,0],[1,0],[1,1]]
提示:
n == grid.length == grid[i].length
n == 2^x 其中 0 <= x <= 6
解题思路
明显的分治策略,将每一个输入矩阵切分为上左、上右、下左、下右,递归终止条件为输入矩阵全0或全1。
其递归方程为:
时间复杂度分析:
T
(
n
)
=
{
O
(
1
)
4
T
(
n
/
2
)
+
O
(
1
)
T(n) = \left\{ \begin{gathered} O(1) \\ 4T(n/2) + O(1) \\ \end{gathered} \right.
T(n)={O(1)4T(n/2)+O(1)
时间复杂度为
T
(
n
)
=
O
(
4
k
)
,
k
=
log
2
n
T(n) = O({4^k}),k = {\log _2}^n
T(n)=O(4k),k=log2n
代码:
// Definition for a QuadTree node.
class Node {
public boolean val;
public boolean isLeaf;
public Node topLeft;
public Node topRight;
public Node bottomLeft;
public Node bottomRight;
public Node() {
this.val = false;
this.isLeaf = false;
this.topLeft = null;
this.topRight = null;
this.bottomLeft = null;
this.bottomRight = null;
}
public Node(boolean val, boolean isLeaf) {
this.val = val;
this.isLeaf = isLeaf;
this.topLeft = null;
this.topRight = null;
this.bottomLeft = null;
this.bottomRight = null;
}
public Node(boolean val, boolean isLeaf, Node topLeft, Node topRight, Node bottomLeft, Node bottomRight) {
this.val = val;
this.isLeaf = isLeaf;
this.topLeft = topLeft;
this.topRight = topRight;
this.bottomLeft = bottomLeft;
this.bottomRight = bottomRight;
}
};
class Solution {
int[][] grid;
public Node construct(int[][] grid) {
this.grid=grid;
return construct0(0,0,grid.length);
}
public Node construct0(int rowbegin,int colbegin,int n) {
int scan=isScan(rowbegin,colbegin,n);
if(scan!=-1) return new Node(scan==1,true);
int k=n/2;
Node res=new Node(true,false);
res.topLeft=construct0(rowbegin,colbegin,k);
res.topRight=construct0(rowbegin,colbegin+k,k);
res.bottomLeft=construct0(rowbegin+k,colbegin,k);
res.bottomRight=construct0(rowbegin+k,colbegin+k,k);
return res;
}
public int isScan(int rowbegin,int colbegin,int n){
int s=grid[rowbegin][colbegin];
for (int i=rowbegin;i<rowbegin+n;i++)
for (int j = colbegin; j < colbegin+n; j++)
if (s != grid[i][j]) return -1;
return s;
}
}