hadoop常见错误

转自:http://xuyuanshuaaa.iteye.com/blog/1188367

 

错误1:bin/hadoop dfs 不能正常启动,持续提示: 
INFO ipc.Client: Retrying connect to server: localhost/127.0.0.1:9000. Already tried 0 time(s). 
原因:由于 dfs 的部分文件默认保存在tmp文件夹,在系统重启时被删除。 
解决:修改core-site.xml 的 hadoop.tmp.dir配置文件路径:/home/hadoop/tmp。 

错误2:hadoop出现了一些问题。用$ bin/hadoop dfsadmin -report 测试的时候,发现dfs没有加载。 
显示如下: 
         Configured Capacity: 0 (0 KB) 
         Present Capacity: 0 (0 KB) 
         DFS Remaining: 0 (0 KB) 
         DFS Used: 0 (0 KB) 
         DFS Used%: ?% 
         Under replicated blocks: 0 
         Blocks with corrupt replicas: 0 
         Missing blocks: 0 
         查看日志: 
         ERROR org.apache.hadoop.hdfs.server.datanode.DataNode: java.io.IOException: Incompatible namespaceIDs in /home/hadoop/data: namenode namespaceID =      2033006627; datanode namespaceID = 1589898341 
        经分析,是由于namenode namespaceID = 2033006627;和datanode namespaceID = 1589898341 不一致造成原因。 
        修改了namenode namespaceID = 1589898341 可以使用,但是重启之后,又不可以用了。 
最后解决方案:删除hadoop用户下的name文件夹,data文件夹,tmp文件夹,temp文件里的内容,然后重新执行namenode命令。 
(在datanode的存储数据结果中,最大的数据结构是storage,实现类中用版本控制信息。如果hadoop调整文件结果布局,version就会改变。以保证文件结构和应用一致); 
重启电脑之后,正常。 

错误3:File /home/hadoop/tmp/mapred/system/jobtracker.info could only be replicated to 0 nodes, instead of 1 
出现此错误,一般发生在datanode与namenode还没有进行连接,就开始往hdfs系统上put数据了。稍等待一会,就可以了。 
也可以使用:hadoop dfsadmin –report命令查看集群的状态。 

错误4: 
每次启动总有部分datanade不能去全部启动,查看日志文件,显示为: 
ERROR org.apache.hadoop.hdfs.server.datanode.DataNode: java.net.UnknownHostException: zgchen-ubutun: zgchen-ubutun at java.net.InetAddress.getLocalHost(InetAddress.java:1426)。 
分析:这是由于 datanode 找不到服务host引起的。 
解决:通过查找/etc/hostname 找到hostname;比如:ubuntu。 
然后找到/etc/hosts ,添加:127.0.1.1 ubuntu 

错误5: 
java.lang.OutOfMemoryError: GC overhead limit exceeded 
分析:这个是JDK6新添的错误类型。是发生在GC占用大量时间为释放很小空间的时候发生的,是一种保护机制。解决方案是,关闭该功能,可以添加JVM的启动参数来限制使用内存: -XX:-UseGCOverheadLimit 
添加位置是:mapred-site.xml 里新增项:mapred.child.java.opts 内容:-XX:-UseGCOverheadLimit 
java.lang.OutOfMemoryError: Java heap space 
出现这种异常,明显是jvm内存不够得原因,要修改所有的datanode的jvm内存大小。 
Java -Xms1024m -Xmx4096m 
一般jvm的最大内存使用应该为总内存大小的一半,我们使用的8G内存,所以设置为4096m,这一值可能依旧不是最优的值。(其实对于最好设置为真实物理内存大小的0.8) 

错误6:Too many fetch-failures 
Answer: 
出现这个问题主要是结点间的连通不够全面。 
1) 检查 、/etc/hosts 
   要求本机ip 对应 服务器名 
   要求要包含所有的服务器ip + 服务器名 
2) 检查 .ssh/authorized_keys 
   要求包含所有服务器(包括其自身)的public key 

错误7:处理速度特别的慢 出现map很快 但是reduce很慢 而且反复出现 reduce=0% 
Answer: 
结合第二点,然后修改可用内存大小。 
conf/hadoop-env.sh 中的export HADOOP_HEAPSIZE=4000 

错误8:能够启动datanode,但无法访问,也无法结束的错误 
在重新格式化一个新的分布式文件时,需要将你NameNode上所配置的dfs.name.dir这一namenode用来存放NameNode 持久存储名字空间及事务日志的本地文件系统路径删除,同时将各DataNode上的dfs.data.dir的路径 DataNode 存放块数据的本地文件系统路径的目录也删除。如本此配置就是在NameNode上删除/home/hadoop/NameData,在DataNode上 删除/home/hadoop/DataNode1和/home/hadoop/DataNode2。这是因为Hadoop在格式化一个新的分布式文件系 统时,每个存储的名字空间都对应了建立时间的那个版本(可以查看/home/hadoop /NameData/current目录下的VERSION文件,上面记录了版本信息),在重新格式化新的分布式系统文件时,最好先删除NameData 目录。必须删除各DataNode的dfs.data.dir。这样才可以使namedode和datanode记录的信息版本对应。 
注意:删除是个很危险的动作,不能确认的情况下不能删除!!做好删除的文件等通通备份!! 

错误9:java.io.IOException: Could not obtain block: blk_194219614024901469_1100 file=/user/hive/warehouse/src_20100924_log/src_20100924_log 
出现这种情况大多是结点断了,没有连接上。或者 mapred.tasktracker.map.tasks.maximum 的设置 超过 cpu cores数目,导致出现获取不到文件。 


错误10:Task Id : attempt_201010291615_0001_m_000234_0, Status : FAILED Error: java.io.IOException: No space left on device 
  Task Id : attempt_201010291615_0001_m_000240_0, Status : FAILED java.io.IOException: Spill failed 
  磁盘空间不够,应该分析磁盘空间df -h 检查是否还存在磁盘空间。 

错误11:Task Id : attempt_201011011336_0007_m_000001_0, Status : FAILED 
org.apache.hadoop.hbase.client.RegionOfflineException: region offline: lm,,1288597709144 
  网上说,将/hbase删除;重启hbase后,可以正常应用了。但是我找不到/hbase目录,只好自己重新删除掉一些hadoop文件,重新生成文件管理系统。 
  还有一个可能是,配置错了/hbase/conf/hbase-env.sh的HBASE_CLASSPATH,这个默认是不配置的,所以可以不配置。 

错误12:org.apache.hadoop.hbase.TableNotFoundException: org.apache.hadoop.hbase.TableNotFoundException: lm 
找不到表,hbase启动了,检查一下是否存在需要的Htable。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值