- 博客(97)
- 收藏
- 关注
转载 Google高级搜索命令
一、site,指定搜索的某個網站。例:desire site:bbs.gfan.com二、filetype,指定搜索的文件類型。例:seo filetype:doc三、双引号,代表完全匹配,使关键词不分开,顺序都不能变。四、减号,事搜索结果更准确。减号与前一个关键词之间一定要有一个空格,与后一个关键词之间一定不能有空格。搜索结果为,匹配前一个关键词但不匹配后一个关键词的结果。例如:seo -...
2018-09-20 21:03:43 6816 1
转载 解决coursera视频无法播放问题
hosts binding like below: 52.84.246.90 d3c33hcgiwev3.cloudfront.net52.84.246.252 d3c33hcgiwev3.cloudfront.net52.84.246.144 d3c33hcgiwev3.cloudfront.net52.84.246.72 d3c33hcgiwev3.cloudfront...
2018-06-15 17:00:21 2021
原创 filezilla客户端报错:服务器发回了不可路由的地址。使用服务器地址代替
需要设置的连接参数选中某一连接项高级——加密——只使用普通ftp传输设置——传输模式——主动重新连接
2018-05-03 19:43:47 8882
转载 看似简单也不简单的分布式ID生成器
一、需求缘起几乎所有的业务系统,都有生成一个唯一记录标识的需求,例如:消息标识:message-id订单标识:order-id帖子标识:tiezi-id这个记录标识往往就是数据库中的主键,数据库上会建立聚集索引(cluster index),即在物理存储上以这个字段排序。 这个记录标识上的查询,往往又有分页
2018-04-27 16:30:10 2257 1
转载 无限容量数据库架构设计
前言和荐言:文中提及的每种实践都值得仔细阅读和体会,尤其一对多中提及的“基因分库法”,结合‘一’和‘多’中的元素巧妙地组合成新ID,很好地达到了按‘一’ 和‘多’入同库和高效查询的目的。回想先前项目中的实践,也不自觉地使用过这个技巧。真是“良好的技巧和实践”都是相似的。--------------------------正文------------------------------
2018-04-27 15:52:49 573
转载 容量规划+单点优化+配置优化,架构师必须掌握的技能
本文将体系化总结互联网架构师需要具备的架构技术。一、容量规划能力文章:《互联网架构,如何进行容量规划》内容:机器到底要加多少台容量评估的方法与步骤二、单点优化能力文章:《单点系统,架构优化方向》内容:系统中会存在单点单点系统性能优化方向单点系统高可用优化方
2018-04-27 14:04:19 501
原创 云计算与边缘计算的区别和联系
开讲之前,先举个例子,更容易理解两个概念:如果把云计算比作整个计算机智能系统的大脑。那么边缘计算就是这个系统的眼睛耳朵和手脚。核心服务器让智能系统具有很强的人工智能,但是如果这个人工智能是聋子瞎子,它也发挥不了太大的作用。大数据应用中常常面对的一个痛点,就是没有采集到合适的数据。边缘计算可以为核心服务器的大数据算法提供最准确,最及时的数据来源。边缘计算和云计算的结合让整个智能系统不
2018-04-26 15:21:55 26940 1
原创 分享一个运维同学常用的站点监测和测速网站17ce.com, 备用
https://www.17ce.com/功能挺多,记录下备用:监测:Get, Ping, MTR, TraceRoute, Dns, Cdn, LDns可以提供:趋势、区域、ISP、错误等分析报告居然还有“赚钱路由器”,和前几年我们做的利用路由器分发app类似,利用用户路由器闲时资源协助17.ce作测速,给用户返现。 https://www.17ce.com/site/alliance ...
2018-04-25 14:48:47 9355 2
转载 秒懂,Java 注解 (Annotation)你可以这样学
文章开头先引入一处图片。 这处图片引自老罗的博客。为了避免不必要的麻烦,首先声明我个人比较尊敬老罗的。至于为什么放这张图,自然是为本篇博文服务,接下来我自会说明。好了,可以开始今天的博文了。Annotation 中文译过来就是注解、标释的意思,在 Java 中注解是一个很重要的知识点,但经常还是有点让新手不容易理解。我个人认为,比较糟糕的技术文档主要特征之一就是:用专业名词来介绍专业名词。比如:J...
2018-04-13 17:48:54 543
转载 互联网分层架构系列之四:前后端为什么要分离
通用业务服务化之后,系统的典型后端结构如上:web-server通过RPC接口,从通用业务服务获取数据biz-service通过RPC接口,从多个基础数据service获取数据基础数据service通过DAO,从独立db/cache获取数据db/cache存储数据 随着时间的推移,系统架构并不会一成不变,业务越来越复杂,改版越来越多,此时web-server层虽然使用了MVC架构,但以下诸多痛点是...
2018-04-12 19:28:44 1473
转载 互联网分层架构系列之三:通用业务服务分层即业务层服务化
《互联网分层架构的本质》简述了两个观点:互联网分层架构的本质,是数据的移动互联网分层架构演进的核心原则:是让上游更高效的获取与处理数据,让下游能屏蔽数据的获取细节 《分层架构:什么时候抽象DAO层,什么时候抽象数据服务层》中的观点是:当手写代码从DB中获取数据,成为通用痛点的时候,就应该抽象出DAO层,简化数据获取过程,提高数据获取效
2018-04-12 19:16:58 2428
转载 互联网分层架构系列之二:基础数据服务分层即DAO与服务化
互联网分层架构的本质,是数据的移动。 互联网分层架构演进的核心原则:让上游更高效的获取与处理数据,复用让下游能屏蔽数据的获取细节,封装 这些在上一篇《互联网分层架构的本质》中有详尽的描述,在实际系统架构演进过程中,如何利用这两个原则,对系统逐步进行分层抽象呢?咱们先从后端系统开始讲解。 本文主要解答两个问题:
2018-04-12 19:10:18 1594
转载 互联网分层架构系列之一: 分层的本质
上图是一个典型的互联网分层架构:客户端层:典型调用方是browser或者APP站点应用层:实现核心业务逻辑,从下游获取数据,对上游返回html或者json数据-缓存层:加速访问存储数据-数据库层:固化数据存储 如果实施了服务化,这个分层架构图可能是这样:中间多了一个服务层。 同一个层次的内部,例如端上的APP,以及web-server,也都有进行MVC分层:view层:展现control层:逻辑m...
2018-04-12 19:04:42 1611
原创 Android电量统计原理,算法和功耗分析优化总结
应用商店中关于电池管理的应用做的极其绚烂,可耗电应用排行、剩余时间计算、关闭耗电程序以节省电量等功能是如何实现的,遇到功耗高的问题从哪些方面入手分析和定位,这里简要总结如下。 一. 电量值的获取和计算 首先解释下各软硬件耗电量的计算。假设设备(如WIFI)单位时间内消耗的电量为w,运行时间为t,则其在这段时间内的耗电量为W=w*t。根据物理学中的知识,电...
2018-04-12 17:00:15 7293
转载 安装和使用battery-historian
复制过来格式全乱了,直接用链接吧 https://blog.csdn.net/jlspypxa1/article/details/76714001补充一个下载地址,不过好像都要VPN才能下载下来。gcr.io/android-battery-historian/stable:3.0blystad/battery-historian...
2018-04-12 14:52:38 1468
转载 两步搞定Hyperledger主打区块链解决方案Fabric
区块链技术发展至今,形成了公有链和联盟链两种主流技术平台。公有链 面向大众,用户可以匿名参与,非常方便,账本数据也公开,加上强大的智能合约,因此公有链极大地促进了区块链概念和技术的普及,比如比特币、Ethereum平台等。联盟链 考虑到商业应用对安全、隐私、监管、审计、性能的需求,提高准入门槛,增加了安全、隐私、可监管审计等商业特性,是区块链技术在商业领域的应用探索。本文将通过系统介绍,帮你两步搞...
2018-04-12 09:59:59 658
转载 [java]final关键字的几种用法
在java的关键字中,static和final是两个我们必须掌握的关键字。不同于其他关键字,他们都有多种用法,而且在一定环境下使用,可以提高程序的运行性能,优化程序的结构。下面我们来了解一下final关键字及其用法。final关键字在java中,final的含义在不同的场景下有细微的差别,但总体上来说,它指的是“这是不可变的”。下面,我们来讲final的四种主要用法。1
2018-04-11 20:15:13 267
转载 [java]static关键字的四种用法
在java的关键字中,static和final是两个我们必须掌握的关键字。不同于其他关键字,他们都有多种用法,而且在一定环境下使用,可以提高程序的运行性能,优化程序的结构。下面我们先来了解一下static关键字及其用法。static关键字1.修饰成员变量在我们平时的使用当中,static最常用的功能就是修饰类的属性和方法,让他们成为类的成员属性和方法,我们通常将用stati
2018-04-11 20:00:49 222
转载 Android 启动“无启动图标的 apk“
在 Android 开发以及测试中,经常遇到需要启动一个没有启动图标的apk,这个时候可以使用 pm 以及 am 命令来配合,启动相应apk。主流程:pm 获取apk包名pm 获取apk详细配置信息,主要是相应启动 Activity 的类的路径am 启动相应 Activity 的类简单实践:pm 获取apk包名连接 adb 后,输入1shell@rk3368_32:/ $ pm list pack...
2018-04-11 16:18:57 3218
转载 Android dm-verity 实现原理深入研究
思维导图:dm-verity说明:源码基于 SC20 平台 Android5.1Android dm-verify overview目录Android dm-verify overview.. 1一、原理… 1与Verified Boot关系… 1dm-verity. 1作用分区… 2二、模块结构… 21.签名
2018-04-11 16:06:39 2071
原创 命令行对Android apk或第三方apk签名
系统默认的四种签名类型:四组默认签名供Android.mk在编译APK使用:1、testkey:普通APK,默认情况下使用。2、platform:该APK完成一些系统的核心功能。经过对系统中存在的文件夹的访问测试,这种方式编译出来的APK所在进程的UID为system。3、shared:该APK需要和home/contacts进程共享数据。4、media:该APK是media/download系统...
2018-04-11 15:59:27 754 1
转载 Java Thread和runnable的差异深入分析
实现并启动线程有两种方法1、写一个类继承自Thread类,重写run方法。用start方法启动线程2、写一个类实现Runnable接口,实现run方法。用new Thread(Runnable target).start()方法来启动多线程原理:相当于玩游戏机,只有一个游戏机(cpu),可是有很多人要玩,于是,start是排队!等CPU选中你就是轮到你,你就run(),当CPU的运行的时间片执行完...
2018-04-02 15:44:55 282
转载 Kafka要点总结及实践
问题导读1.Kafka独特设计在什么地方?2.Kafka如何搭建及创建topic、发送消息、消费消息?3.如何书写Kafka程序?4.数据传输的事务定义有哪三种?5.Kafka判断一个节点是否活着有哪两个条件?6.producer是否直接将数据发送到broker的leader(主节点)?7.Kafa consumer是否可以消费指定分区消息?8.Kafka消息是采用Pull模式,还是Push模式?...
2018-01-31 16:35:45 730
原创 斯坦福机器学习Coursera课程:第八次作业--推荐系统
根据已有的1682部电影和943用户及部分用户对电影的评分数据,对新用户作电影推荐或预测未评价的评分。一. 准备工作1. 加载ex8_movies.mat数据Y (1682*943) 用户评份数据,由1-5组成;R 标记矩阵,R(i,j)=1代表用户j评分了电影i,没评的为0;目标是对用户没评分的电影作预测;同时把预测分最高的电影推荐给用户。同时,为更好地理解矩阵Y
2018-01-29 17:00:17 560
转载 第四范式程晓澄:机器学习如何优化推荐系统
本文为你介绍推荐系统的诞生土壤和早起演进、推荐系统当下的基本架构以及如何搭建一个推荐系统。9月20日晚,我们邀请到第四范式资深算法科学家程晓澄,他以“机器学习在推荐系统中的应用”为题,与大家分享了如何用机器学习来优化推荐系统相关技术问题。程晓澄是第四范式资深算法科学家、推荐系统服务算法负责人。目前负责逻辑思维得到 APP、海外移动新闻聚合 APP New
2018-01-25 16:50:05 1179
转载 一文图解机器学习的基本算法
每当提到机器学习,大家总是被其中的各种各样的算法和方法搞晕,觉得无从下手。确实,机器学习的各种套路确实不少,但是如果掌握了正确的路径和方法,其实还是有迹可循的,这里我推荐SAS的Li Hui的这篇博客,讲述了如何选择机器学习的各种方法。 另外,Scikit-learn 也提供了一幅清晰的路线图给大家选择:其实机器学习的基本算法都很简单,下面我们就利用二维数据和交互图形来看看机器学习
2018-01-25 16:46:22 502
原创 斯坦福机器学习Coursera课程:第五次作业--正则多项式回归和误差分析
本次作业主要是实现正则化多项式回归,画出训练误差和交叉测试误差随训练用例数量变化的曲线,分析高偏差和高方差的影响因素,最后画出的取值变化对误差的影响曲线。主要函数文件如下 ,需要实现最后4个带*文件的函数。ex5.m - Octave/MATLAB script that steps you through the exerciseex5data1.mat - Datasets
2018-01-25 15:28:50 905
原创 构建机器学习算法的方法和建议
构建一个机器学习算法的推荐方法为:1.从一个简单的能快速实现的算法开始,实现该算法并用交叉验证集数据测试这个算法2.绘制学习曲线,决定是增加更多数据,或者添加更多特征,还是其他选择3.进行误差分析:人工检查交叉验证集中我们算法中产生预测误差的实例,看看这些实例是否有某种系统化的趋势但是有时候,只使用绝对误差值未必能能作为评判算法效果的唯一依据,还要借助其它参数,尤其当我们的
2018-01-25 11:07:18 404
原创 机器学习算法的效果评估和优化方法
当我们运用训练好了的模型来预测未知数据的时候发现有较大的误差,我们下一步可以做什么?1.获得更多的训练实例——通常是有效的,但代价较大,下面的方法也可能有效,可考虑先采用下面的几种方法。2.尝试减少特征的数量3.尝试获得更多的特征4.尝试增加多项式特征5.尝试减少归一化程度λ6.尝试增加归一化程度λ 我们不应该随机选择上面的某种方法来
2018-01-24 20:31:54 3957
原创 斯坦福机器学习Coursera课程:第四周作业--人工神经网络
根据课程内容,先简要说下神经网络的基本思想和步骤:其实神经网络就像是logistic regression,只不过我们把logistic regression中的输入向量[x1~x3]变成了中间层的[a(2)1~a(2)3], 即h(x)=g(θ(2)0a(2)0+θ(2)1a(2)1+θ(2)2a(2)2+θ(2)3a(2)3)我们可以把a0,a1,a2,a3看成更为
2018-01-24 18:57:01 1651
原创 阿里云容器启动失败: failed to unshare namespaces, running exec setns process for init, Unable to create nf_co
阿里云Swarm集群上一个节点启动容器失败,日志和事件中的报错信息如下:"failed to unshare namespaces: Cannot allocate memory"启动容器失败:Error response from daemon: Error response from daemon: oci runtime error: container_linux.go:262: star...
2018-01-23 20:10:13 7560 2
原创 斯坦福机器学习Coursera课程:第六周作业--支持向量机(SVM)
中间停了一段,课程任务是完成了,但都没在博客上记录和更新。最近抽空重新翻看下,作以记录。本次作业主要两个内容:不同数据集的模型训练和垃圾邮件分类器。首先是把数据图形化展现后,根据不同的C值画出不同不分类边界(C相当于线性/逻辑回归线中的正则化参数),以对应C 较大时,相当于λ较小,可能会导致过拟合,高方差;C 较小时,相当于λ较大,可能会导致低拟合,高偏差;下面是C分别
2018-01-22 18:41:08 636
原创 Octave常用操作函数和技巧汇总
% 注释标识基本运算逻辑运算: 1==2 返回0,即false~= 不等于&& || XOR()输出或打印控制:赋值后加分号将不在屏幕上打印任何内容如, 比较a=3; a=3 的区别Disp(sprint(‘2 decimals: %0.2f’,a))) 或命令行中 format long, format short矩阵生成:A=[1,2; 3,4;5,6] V=[1,2,3] V=1
2018-01-17 20:23:22 6848
原创 mysql导出库和表相关的操作和问题
格式为: mysqldump -u用户名 -p密码 数据库名 表名 --where="筛选条件" > 导出文件路径下面按不同场景分别说明:导出:导整个库(表结构和数据): mysqldump -hxx -uxx -pxx db_name > db_name.sql导整个库(仅表结构): mysqldump -hxx -uxx -pxx-ddb_name > db_name.s
2018-01-10 16:01:19 508 1
原创 从AWS S3换成阿里云OSS存储所踩的坑
因业务需要,AWS S3 不能使用了,要换成阿里云OSS存储和下载。简单作以记录,以作备忘。1.参照https://help.aliyun.com/product/31815.html?spm=5176.2020520105.146.d500.30285e77DhksTQ 开通OSS服务并创建存储空间,得到访问的域名endpoint、AccessKeyID和AccessKeySecret;
2017-12-22 11:21:47 16511
转载 分布式消息队列RabbitMQ之三:四种典型使用场景和代码示例
RabbitMQ主页:https://www.rabbitmq.com/AMQPAMQP协议是一个高级抽象层消息通信协议,RabbitMQ是AMQP协议的实现。它主要包括以下组件:1.Server(broker): 接受客户端连接,实现AMQP消息队列和路由功能的进程。2.Virtual Host:其实是一个虚拟概念,类似于权限控制组,一个Virtual H
2017-12-22 10:32:30 2917
转载 分布式消息队列RabbitMQ之二: exchange、route、queue关系
从AMQP协议可以看出,MessageQueue、Exchange和Binding构成了AMQP协议的核心,下面我们就围绕这三个主要组件 从应用使用的角度全面的介绍如何利用Rabbit MQ构建消息队列以及使用过程中的注意事项。 1. 声明MessageQueue 在Rabbit MQ中,无论是生产者发送消息
2017-12-22 10:29:43 1703
原创 分布式消息队列RabbitMQ之一:基本概念理解
许多新手在刚接触RabbitMQ的时候,会被各种名词弄晕,包括ConnectionFactory 、Connection 、Channel、Exchange、Queue、RoutingKey、BindingKey等等,现在我言简意赅的描绘一下这些名词到底是啥概念首先我们肯定知道RabbitMQ就是消息队列的一种实现,那么围绕这个,我们就可以思考一个消息队列到底需要什么,当然是需
2017-12-22 10:06:01 668 1
原创 斯坦福机器学习Coursera课程:第三周作业--逻辑回归
问题描述:用逻辑回归根据学生的考试成绩来判断该学生是否可以入学。这里的训练数据(training instance)是学生的两次考试成绩,以及TA是否能够入学的决定(y=0表示成绩不合格,不予录取;y=1表示录取)因此,需要根据trainging set 训练出一个classification model。然后,拿着这个classification model 来评估新学生能否入学。训练数据的成绩
2017-11-10 15:45:14 1906 3
原创 Linux 常用易忘操作命令整理汇总(持续收集更新...)
一. 网络相关1. 查看 外网IPcurl ifconfig.me2. 查看网络端口占用lsof -i:xxx or netstat -nalp | grep xxx 3. 关闭ubuntu防火墙sudo ufw status/disable 二. 文件操作1.im中文件替换:%s/xx/xx/g ^开头,$结尾2. 多目录下找文件find dir1/ dir2/ d
2017-11-07 17:44:56 412
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人