Py4JJavaError: An error occurred while calling o22.trainKMeansModel.

在使用PySpark进行KMeans聚类时遇到Py4JJavaError,详细错误信息为'An error occurred while calling o22.trainKMeansModel'。这个问题可能由于数据预处理、内存限制或Spark配置不当引起。解决方案可能涉及检查数据质量,增加内存资源,或调整Spark配置参数。
摘要由CSDN通过智能技术生成
hduser@master:~$ spark-submit --driver-memory 512m --master local[4] pythonwork/mllib/k_means_example.py

Py4JJavaErrorTraceback (most recent call last)
/home/hduser/pythonwork/mllib/k_means_example.py in <module>()
     37 
     38     # Build the model (cluster the data)
---> 39     clusters = KMeans.train(parsedData, 2, maxIterations=10, initializationMode="random")
     40 
     41     # Evaluate clustering by computing Within Set Sum of Squared Errors

/usr/local/spark/python/lib/pyspark.zip/pyspark/mllib/clustering.py in train(cls, rdd, k, maxIterations, runs, initializationMode, seed, initializationSteps, epsilon, initialModel)
    354         model = callMLlibFunc("trainKMeansModel", rdd.map(_convert_to_vector), k, maxIterations,
    355                               runs, initializationMode, seed, initializationSteps, epsilon,
--> 356                               clusterInitialModel)
    357         centers = callJavaFunc(rdd.context, model.clusterCenters)
    358         return KMeansModel([c.toArray() for c in centers])

/usr/local/spark/python/lib/pyspark.zip/pyspark/mllib/common.py in callMLlibFunc(name, *args)
    128     sc = SparkContext.getOrCreate()
    129     api = getattr(sc._jvm.PythonMLLibAPI(), name)
--> 130     return callJavaFunc(sc, api, *args)
    131 
    132 

/usr/local/spark/python/lib/pyspark.zip/pyspark/mllib/common.py in callJavaFunc(sc, func, *args)
    121     """ Call Java Function """
    122     args = [_py2java(sc, a) for a in args]
--> 123     return _java2py(sc, func(*args))
    124 
    125 

/usr/local/spark/python/lib/py4j-0.10.6-src.zip/py4j/java_gateway.py in __call__(self, *args)
   1158         answer = self.gateway_client.send_command(command)
   1159         retur
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值