【动态规划】【计蒜客】非法二进制数

题目描述:

思路:

相比于非法二进制数,合法二进制数有规律可循,所以可以用总数减去合法二进制数的数量来求非法二进制数的数量。合法二进制数可以分为末位是1和末位是0两种情况。对于一个i位的二进制数,当末位是1时,那么前i-1位的末位必定是0(否则就不是合法数了),所以dp[i][1]=dp[i-1][0],这里dp数组的第一个下标表示二进制数的位数,第二个下标表示最低位是1还是0);当末位是0时,前i-1位末位可以是1也可以是0,所以dp[i][0]=dp[i-1][0]+dp[i-1][1];这样就得到了两个递推公式。

#include <iostream>
using namespace std;
int main()
{
    long long int mod=1e9+7;
    int maxn=100;
    long long int dp[maxn][2];
    long long int a[maxn];
    int n;
    cin>>n;
    a[1]=2;
    for(int i=2;i<=n;i++)
    {
        a[i]=(a[i-1]*2)%mod;
    }
    dp[1][1]=1;
    dp[1][0]=1;
    for(int i=2;i<=n;i++)
    {
        dp[i][1]=dp[i-1][0]%mod;
        dp[i][0]=(dp[i-1][0]+dp[i-1][1])%mod;
    }
    long long int res=(a[n]-((dp[n][0]+dp[n][1]))%mod+mod)%mod;
    cout<<res<<endl;
}

之所以使用数组a而不直接用2^n,是为了取模防止溢出;下面对dp[i][0]和dp[i][1]以及dp[i][0]+dp[i][1]取模也是同样的道理;由于a[n]-(dp[i][0]+dp[i][1])可能是个负数,所以这里加个mod再取模。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值