机器学习--监督学习(二)

多项式分布

多项式分布是二项式分布的推广。二项分布的典型例子是扔硬币,硬币正面朝上概率为p, 重复扔 n n 次硬币,k次为正面的概率即为一个二项分布概率。二项式分布只涉及到两个事件,例如扔硬币的正面与反面,如果将事件个数推广到 k k 个,这就是多项式分布。典型的例子是扔骰子,假设扔n次,点数 k(k=1,2,3,4,5,6) k ( k = 1 , 2 , 3 , 4 , 5 , 6 ) 出现的 nk n k 次的概率 P(n1,n2,...n6) P ( n 1 , n 2 , . . . n 6 ) 就是多项式分布。

假设某随机事件有 k k 个可能的事件,它们出现的概率分别为ϕ1,ϕ2,...,ϕk,那么在 n n 次试验中它们出现的次数为n1,n2,...,nk(n1+n2+...+nk=n)的概率即为多项式分布:

P(n1,n2,...,nk)=Cn1nCn2nn1...Cnknn1n2...nk1ϕn11ϕn22..ϕnkk P ( n 1 , n 2 , . . . , n k ) = C n n 1 C n − n 1 n 2 . . . C n − n 1 − n 2 . . . n k − 1 n k ϕ 1 n 1 ϕ 2 n 2 . . ϕ k n k

=n!n1!n2!...nk!ϕn11ϕn22..ϕnkk = n ! n 1 ! n 2 ! . . . n k ! ϕ 1 n 1 ϕ 2 n 2 . . ϕ k n k

多项式分布的期望为:
E(n1,n2,...nk)=(nϕ1,nϕ2,...nϕk) E ( n 1 , n 2 , . . . n k ) = ( n ϕ 1 , n ϕ 2 , . . . n ϕ k )

随机变量 ni,i=1,2,...,k n i , i = 1 , 2 , . . . , k 的方差为:
bii=Var(ni)=nϕi(1ϕi) b i i = V a r ( n i ) = n ϕ i ( 1 − ϕ i )

随机变量的协方差矩阵为:
Bk×k=(bij),bii=nϕi(1ϕi),bij=nϕiϕj B k × k = ( b i j ) , b i i = n ϕ i ( 1 − ϕ i ) , b i j = − n ϕ i ϕ j

Softmax

softmax模型假设后验概率 P(y|x) P ( y | x ) 服从 n=1 n = 1 的多项式分布, 即 n1+n2+...+nk=1 n 1 + n 2 + . . . + n k = 1 ,由上式推导可得:

P(y|x)=1kϕiI{y=i} P ( y | x ) = ∏ 1 k ϕ i I { y = i }

其中, I{s} I { s } 为指示函数,当 s s 为真时,I{s}=1,否则为0。

因为 ϕ1+ϕ2+...+ϕk=1 ϕ 1 + ϕ 2 + . . . + ϕ k = 1 ,所以 ϕk=1ϕ1+ϕ2+...+ϕk1) ϕ k = 1 − ( ϕ 1 + ϕ 2 + . . . + ϕ k − 1 ) ,从而可以省略一个参数,方便计算。同理, I{y=k}=1k11I{y=i} I { y = k } = 1 − ∑ 1 k − 1 I { y = i }
接下来,将其写指数族分布的形式。

P(y|x)=ϕI{y=1}1ϕI{y=2}2...ϕI{y=k}k P ( y | x ) = ϕ 1 I { y = 1 } ϕ 2 I { y = 2 } . . . ϕ k I { y = k }

=ϕI{y=1}1ϕI{y=2}2...ϕ1k11I{y=k1}k = ϕ 1 I { y = 1 } ϕ 2 I { y = 2 } . . . ϕ k 1 − ∑ 1 k − 1 I { y = k − 1 }

=exp(ϕI{y=1}1ϕI{y=2}2...ϕ1k11I{y=k1}k) = e x p ( ϕ 1 I { y = 1 } ϕ 2 I { y = 2 } . . . ϕ k 1 − ∑ 1 k − 1 I { y = k − 1 } )

=exp(I{y=1}logϕ1I{y=1}logϕk+I{y=2}logϕ2I{y=2}logϕk+... = e x p ( I { y = 1 } l o g ϕ 1 − I { y = 1 } l o g ϕ k + I { y = 2 } l o g ϕ 2 − I { y = 2 } l o g ϕ k + . . .

+I{y=k1}logϕk1I{y=k1}logϕk+logϕk) + I { y = k − 1 } l o g ϕ k − 1 − I { y = k − 1 } l o g ϕ k + l o g ϕ k )

=exp(1k1I{y=i}logϕiϕk+logϕk) = e x p ( ∑ 1 k − 1 I { y = i } l o g ϕ i ϕ k + l o g ϕ k )

=b(y)exp(ηTT(y)a(η)) = b ( y ) e x p ( η T T ( y ) − a ( η ) )

其中,
b(y)=1 b ( y ) = 1

η=(logϕ1ϕk,logϕ2ϕk,...logϕk1ϕk)=θTx η = ( l o g ϕ 1 ϕ k , l o g ϕ 2 ϕ k , . . . l o g ϕ k − 1 ϕ k ) = θ T x

a(η)=logϕk=log(11k1ϕi) a ( η ) = − l o g ϕ k = − l o g ( 1 − ∑ 1 k − 1 ϕ i )

T(1)=(1,0,...0)T,T(2)=(0,1,0,...0)T,...,T(k)=(0,0,0...0)T,T(y)Rk1 T ( 1 ) = ( 1 , 0 , . . .0 ) T , T ( 2 ) = ( 0 , 1 , 0 , . . .0 ) T , . . . , T ( k ) = ( 0 , 0 , 0...0 ) T , 满 足 T ( y ) ∈ R k − 1

由于

ϕk=1i=1k1ϕi=1i=1k1eηiϕk ϕ k = 1 − ∑ i = 1 k − 1 ϕ i = 1 − ∑ i = 1 k − 1 e η i ϕ k

所以
ϕk=11+k1i=1ηi ϕ k = 1 1 + ∑ i = 1 k − 1 η i

ϕi=ϕkeηi=eηi1+k1i=1eηi ϕ i = ϕ k e η i = e η i 1 + ∑ i = 1 k − 1 e η i

根据广义线性模型,写出假设函数 hθ=E[T(y)|x] h θ = E [ T ( y ) | x ] ,这里 T(y) T ( y ) 是一个向量,表示在一次实验中样本属于某一类。亦即:

E[T(y)|x]=E[y=i|x] E [ T ( y ) | x ] = E [ y = i | x ]

=nϕi = n ϕ i

=ϕi = ϕ i

=eηi1+k1i=1eηi = e η i 1 + ∑ i = 1 k − 1 e η i

=eηiki=1eηi = e η i ∑ i = 1 k e η i

=eθixiki=1eθixi = e θ i x i ∑ i = 1 k e θ i x i

这里令 ηk=0 η k = 0 。

现在的问题转换成如何求解 θ θ 。由上文可知, P(y|x) P ( y | x ) 服从指数分布,因此问题可以转换成求 P(y|x) P ( y | x ) 关于 θ θ 的最大似然估计。

L(θ)=i=1mj=1kϕjI{y(i)=j} L ( θ ) = ∏ i = 1 m ∏ j = 1 k ϕ j I { y ( i ) = j }

这里 m m 为样本数,对其取对数:
logL(θ)=i=1mj=1kI{y(i)=j}logϕj

=i=1mj=1kI{y(i)=j}logeθjx(i)jkl=1eθlx(i)l = ∑ i = 1 m ∑ j = 1 k I { y ( i ) = j } l o g e θ j x j ( i ) ∑ l = 1 k e θ l x l ( i )

L(θ)θn=i=1mj=1kI{y(i)=j}1ϕiϕiθn ∂ L ( θ ) ∂ θ n = ∑ i = 1 m ∑ j = 1 k I { y ( i ) = j } 1 ϕ i ∂ ϕ i ∂ θ n

n=j n = j

ϕiθn=ϕj(1ϕj)x(i)j ∂ ϕ i ∂ θ n = ϕ j ( 1 − ϕ j ) x j ( i )

nj n ≠ j
ϕiθn=ϕjϕnx(i)j ∂ ϕ i ∂ θ n = − ϕ j ϕ n x j ( i )

因此,可以得到:

L(θ)θn=i=1m[1{y(i)=n}(1ϕn)x(i)jjnk1{y(i)=j}ϕnx(i)j] ∂ L ( θ ) ∂ θ n = ∑ i = 1 m [ 1 { y ( i ) = n } ( 1 − ϕ n ) x j ( i ) − ∑ j ≠ n k 1 { y ( i ) = j } ϕ n x j ( i ) ]

因为 kjn1{y(i)=j}=11{y(i)=n} ∑ j ≠ n k 1 { y ( i ) = j } = 1 − 1 { y ( i ) = n }
所以

L(θ)θj=i=1m[x(i)j(1{y(i)=j}ϕj)] ∂ L ( θ ) ∂ θ j = ∑ i = 1 m [ x j ( i ) ( 1 { y ( i ) = j } − ϕ j ) ]

参考文献

  1. http://blog.csdn.net/hqh45/article/details/44228715
  2. http://123.125.114.20/view/246e9f4669eae009581bec66.html?re=view
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值