AtCoder Beginner Contest 318 G - Typical Path Problem 题解

46 篇文章 7 订阅
43 篇文章 5 订阅

G - Typical Path Problem

题目大意

给定一张 N N N 个点、 M M M 条边的简单无向图 G G G 和三个整数 A , B , C A,B,C A,B,C

是否存在一条从顶点 A A A C C C,且经过 B B B 的简单路径?

数据范围:

  • 3 ≤ N ≤ 2 × 1 0 5 3\le N\le 2\times 10^5 3N2×105
  • N − 1 ≤ M ≤ min ⁡ ( N ( N − 1 ) 2 , 2 × 1 0 5 ) N-1\le M\le \min(\frac{N(N-1)}2,2\times 10^5) N1Mmin(2N(N1),2×105)
  • 1 ≤ A , B , C ≤ N 1\le A,B,C\le N 1A,B,CN A , B , C A,B,C A,B,C 互不相同)

什么是 简单路径
简单路径 是不重复经过同一个点的路径。例如, 1 → 2 → 3 1\to 2\to 3 123 是简单路径,但 1 → 2 → 1 1\to 2\to 1 121 不是简单路径。

解法1:最大流

不难发现,存在一条 A → B → C A\to B\to C ABC 的简单路径,当且仅当存在一条 B → A B\to A BA 和一条 B → C B\to C BC 的路径,使得这两条路径不经过同一个点( B B B 除外)。因此,我们可以构建网络流模型来解决此问题。

考虑由 ( 2 N + 2 ) (2N+2) (2N+2) 个点组成的有向图 G ′ G' G

  • 源点: s s s
  • 汇点: t t t
  • G G G 中每个点对应的入点: x 1 , … , x N x_1,\dots,x_N x1,,xN
  • G G G 中每个点对应的出点: y 1 , … , y N y_1,\dots,y_N y1,,yN

然后进行连边:

  • 对于每个 1 ≤ i ≤ N 1\le i\le N 1iN,从入点 x i x_i xi 向出点 y i y_i yi 连接一条流量为 1 1 1 的边;
  • 从源点 s s s 到中转点的入点 x B x_B xB 连接一条流量为 2 2 2 的边;
  • A A A C C C 的出点 y A , y C y_A,y_C yA,yC 向汇点 t t t 分别连接一条流量为 1 1 1 的边;
  • 最后, ∀ ( u , v ) ∈ E G \forall (u,v)\in E_G (u,v)EG,连接 y u → x v y_u \to x_v yuxv y v → x u y_v \to x_u yvxu,流量为 1 1 1

计算 s s s t t t 的最大流,如果最大流为 2 2 2 则必定有存在不经过同一个顶点的 B → A , B → C B\to A,B\to C BA,BC 的路径。

证明
显然,如果最大流为 2 2 2,必然通过了 y A y_A yA y C y_C yC 向汇点连接的边,则一定分别有 B → A B\to A BA B → C B\to C BC 的路径。
假设选择的这两条路径经过了同一顶点 v v v,则两流都必须经过 x v → y v x_v\to y_v xvyv 这一条流量为 1 1 1 的边,此时最大流不可能超过 1 1 1。而最大流为 2 2 2,说明假设不成立,故没有经过同一顶点。

若使用 Dinic \text{Dinic} Dinic 算法,由于最大流不超过 2 2 2,网络流的时间复杂度为 O ( N + M ) \mathcal O(N+M) O(N+M)

代码实现

在以下的两种实现中,我们规定

  • 源点: s = 0 s=0 s=0
  • 汇点: t = 2 n + 1 t=2n+1 t=2n+1
  • i i i 的入点: x i = i x_i=i xi=i
  • i i i 的出点: y i = n + i y_i=n+i yi=n+i

AC Library 实现

AtCoder Library 内置最大流的 Dinic \text{Dinic} Dinic 实现。

#include <cstdio>
#include <atcoder/maxflow>
using namespace std;

int main()
{
	int n, m, a, b, c;
	scanf("%d%d%d%d%d", &n, &m, &a, &b, &c);
	int s = 0, t = (n << 1) + 1;
	atcoder::mf_graph<int> G(t + 1);
	G.add_edge(s, b + n, 2);
	G.add_edge(a + n, t, 1);
	G.add_edge(c + n, t, 1);
	for(int i=1; i<=n; i++)
		G.add_edge(i, i + n, 1);
	while(m--)
	{
		int x, y;
		scanf("%d%d", &x, &y);
		G.add_edge(x + n, y, 1);
		G.add_edge(y + n, x, 1);
	}
	puts(G.flow(s, t, 2) == 2? "Yes": "No");
	return 0;
}

Dinic 手写实现

Dinic \text{Dinic} Dinic 算法对于此图的时间复杂度为 O ( N + M ) \mathcal O(N+M) O(N+M)。如果不清楚算法原理可以参考 OI Wiki

关于空间分配问题
由于新图 G ′ G' G 包含 ( N + 2 M + 3 ) (N+2M+3) (N+2M+3) 条边,若使用静态链式前向星存图,数组大小需要开到 2 ( N + 2 M + 3 ) 2(N+2M+3) 2(N+2M+3),其理论最大值为 1.2 × 1 0 6 + 6 1.2\times 10^6+6 1.2×106+6。此处建议使用 1.25 × 1 0 6 1.25\times 10^6 1.25×106 大小的数组。

#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#define maxn 400005
#define maxm 1250005
using namespace std;

int n, s, t, head[maxn], cur[maxn], dis[maxn],
	cnt, w[maxm], to[maxm], nxt[maxm];

inline void add(int u, int v, int flow)
{
	nxt[cnt] = head[u];
	head[u] = cnt;
	to[cnt] = v;
	w[cnt++] = flow;
}

inline void add_flow(int u, int v, int f)
{
	add(u, v, f);
	add(v, u, 0);
}

inline bool bfs()
{
	memset(dis, -1, sizeof(int) * n);
	dis[s] = 0, cur[s] = head[s];
	queue<int> q;
	q.push(s);
	while(!q.empty())
	{
		int v = q.front(); q.pop();
		for(int i=head[v]; ~i; i=nxt[i])
			if(w[i])
			{
				int u = to[i];
				if(dis[u] == -1)
				{
					dis[u] = dis[v] + 1, cur[u] = head[u];
					if(u == t) return true;
					q.push(u);
				}
			}
	}
	return false;
}

int dfs(int v, int flow)
{
	if(v == t) return flow;
	int res = 0;
	for(int i=cur[v]; ~i && flow; i=nxt[i])
	{
		cur[v] = i;
		int u = to[i];
		if(w[i] && dis[u] == dis[v] + 1)
		{
			int k = dfs(u, min(flow, w[i]));
			w[i] -= k;
			w[i ^ 1] += k;
			flow -= k;
			res += k;
		}
	}
	return res;
}

int main()
{
	int n, m, a, b, c;
	scanf("%d%d%d%d%d", &n, &m, &a, &b, &c);
	s = 0, t = (n << 1) + 1, ::n = t + 1;
	memset(head, -1, sizeof(int) * ::n);
	add_flow(s, b + n, 2);
	add_flow(a + n, t, 1);
	add_flow(c + n, t, 1);
	for(int i=1; i<=n; i++)
		add_flow(i, i + n, 1);
	while(m--)
	{
		int x, y;
		scanf("%d%d", &x, &y);
		add_flow(x + n, y, 1);
		add_flow(y + n, x, 1);
	}
	int mf = 0;
	while(bfs()) mf += dfs(s, 2);
	puts(mf == 2? "Yes": "No");
	return 0;
}

解法2:圆方树

注意到以下算法的正确性:

  • 找到 A → C A\to C AC 的任意简单路径。对于经过的每一个点双连通分量,如果 B B B 在此点双内,则必然存在 A → B → C A\to B\to C ABC 的简单路径;如果 B B B 不属于任一经过的点双,则不可能存在 A → B → C A\to B\to C ABC 的简单路径。

因此,可以使用 Tarjan \text{Tarjan} Tarjan 算法构造原图的圆方树 T T T 来解决此问题。将上述算法转换到圆方树上如下:

  • T T T 上找到 A → C A\to C AC 的唯一简单路径。对于经过的每一个方点,如果 B B B 是与其相邻的圆点,则必然存在 A → B → C A\to B\to C ABC 的简单路径;如果 B B B 不与任一经过的方点相邻,则不可能存在 A → B → C A\to B\to C ABC 的简单路径。

总时间复杂度为 O ( N + M ) \mathcal O(N+M) O(N+M),实际运行时间优于网络流解法。

代码实现

小贴士:圆方树相关的数组要开到两倍大小,不然会 RE 哦~

#include <cstdio>
#include <cstdlib>
#include <vector>
#define maxn 200005
using namespace std;

inline void setmin(int& x, int y)
{
	if(y < x) x = y;
}

vector<int> G[maxn], T[maxn << 1];

inline void add_edge(vector<int>* G, int x, int y)
{
	G[x].push_back(y);
	G[y].push_back(x);
}

int dfc, dfn[maxn], low[maxn], top, st[maxn], cnt;

void tarjan(int v)
{
	low[v] = dfn[v] = ++dfc;
	st[++top] = v;
	for(int u: G[v])
		if(!dfn[u])
		{
			tarjan(u);
			setmin(low[v], low[u]);
			if(low[u] == dfn[v])
			{
				add_edge(T, v, ++cnt);
				do add_edge(T, st[top], cnt);
				while(st[top--] != u);
			}
		}
		else setmin(low[v], dfn[u]);
}

int n, m, a, b, c, ct[maxn << 1];
void dfs(int v, int par)
{
	if(v > n)
		for(int u: T[v])
			ct[u] ++;
	if(v == c)
	{
		puts(ct[b]? "Yes": "No");
		exit(0);
	}
	for(int u: T[v])
		if(u != par)
			dfs(u, v);
	if(v > n)
		for(int u: T[v])
			ct[u] --;
}

int main()
{
	scanf("%d%d%d%d%d", &n, &m, &a, &b, &c);
	while(m--)
	{
		int x, y;
		scanf("%d%d", &x, &y);
		add_edge(G, x, y);
	}
	cnt = n;
	tarjan(1);
	dfs(a, -1);
	return 0;
}

总结

三种解法的对比参见下表:

解法代码长度运行时间内存占用
最大流(AC Library)1 523   B 523~\mathrm{B} 523 B 337   m s 337~\mathrm{ms} 337 ms 106480   K B 106480~\mathrm{KB} 106480 KB
最大流(Dinic)2 1650   B 1650~\mathrm{B} 1650 B 334   m s 334~\mathrm{ms} 334 ms 46980   K B 46980~\mathrm{KB} 46980 KB
圆方树3 1142   B 1142~\mathrm{B} 1142 B 162   m s 162~\mathrm{ms} 162 ms 57824   K B 57824~\mathrm{KB} 57824 KB

可见,圆方树算法的运行速度最快,最大流(AC Library)的代码最短,最大流(Dinic)的内存占用最小。

个人评价
这道题出得很好,题意简单而内涵丰富。
我赛时甚至没想到还可以网络流


  1. https://atcoder.jp/contests/abc318/submissions/45209577 ↩︎

  2. https://atcoder.jp/contests/abc318/submissions/45212257 ↩︎

  3. https://atcoder.jp/contests/abc318/submissions/45210151 ↩︎

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
AtCoder Beginner Contest 134 是一场 AtCoder 的入门级比赛,以下是每道题的简要题解: A - Dodecagon 题目描述:已知一个正十二边形的边长,求它的面积。 解题思路:正十二边形的内角为 $150^\circ$,因此可以将正十二边形拆分为 12 个等腰三角形,通过三角形面积公式计算面积即可。 B - Golden Apple 题目描述:有 $N$ 个苹果和 $D$ 个盘子,每个盘子最多可以装下 $2D+1$ 个苹果,求最少需要多少个盘子才能装下所有的苹果。 解题思路:每个盘子最多可以装下 $2D+1$ 个苹果,因此可以将苹果平均分配到每个盘子中,可以得到最少需要 $\lceil \frac{N}{2D+1} \rceil$ 个盘子。 C - Exception Handling 题目描述:给定一个长度为 $N$ 的整数序列 $a$,求除了第 $i$ 个数以外的最大值。 解题思路:可以使用两个变量 $m_1$ 和 $m_2$ 分别记录最大值和次大值。遍历整个序列,当当前数不是第 $i$ 个数时,更新最大值和次大值。因此,最后的结果应该是 $m_1$ 或 $m_2$ 中较小的一个。 D - Preparing Boxes 题目描述:有 $N$ 个盒子和 $M$ 个物品,第 $i$ 个盒子可以放入 $a_i$ 个物品,每个物品只能放在一个盒子中。现在需要将所有的物品放入盒子中,每次操作可以将一个盒子内的物品全部取出并分配到其他盒子中,求最少需要多少次操作才能完成任务。 解题思路:首先可以计算出所有盒子中物品的总数 $S$,然后判断是否存在一个盒子的物品数量大于 $\lceil \frac{S}{2} \rceil$,如果存在,则无法完成任务。否则,可以用贪心的思想,每次从物品数量最多的盒子中取出一个物品,放入物品数量最少的盒子中。因为每次操作都会使得物品数量最多的盒子的物品数量减少,而物品数量最少的盒子的物品数量不变或增加,因此这种贪心策略可以保证最少需要的操作次数最小。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值