数据结构和算法基础

1:时间复杂程度
#注意while循环和for循环都循环n次所用的时间不同,
#include<stdio.h>
int main(){
int n=10000,ans=0; //执行一次
for(int i=0;i<n;i++){ //执行n次
int j=0; //执行1次
while(j<=n){ //执行log(n)次
j*=2;
}
}
return 0; //执行一次
}

我们以x轴为n的规模,y轴为整体的计算次数,可以发现其明显的计算区别,立方级别似乎很小的数就变得需要很多得计算了,而相对得logn级别得复杂度似乎无论怎么增加n,其涨幅都不是很明显

	然而事实上,计算机的计算次数何止60次啊,计算机真实的计算速度是论千论万论亿级别的计算,所以我们的n会变得非常之大,让我们把坐标进行变化,以10000为界进行理解。
可以见到,平方以及立方级别的复杂度几乎已经是平贴着y轴的一条直线了,而O(n*log(n))与O(n)还保持着一定的速率进行增长,log(n)又是另一个极端,它变成了一个几乎贴着x轴的直线,这样算法的效率就轻易看得出了。

综上可以直观的得出:

O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n)

在设计程序的时候一定要注意,高计算需求的地方一定不要使用太高的时间复杂度的计算方式!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值