题目描述
有三个塔柱(以A,B,C表示)。在A上有一个干塔,共N层。今以一个圆盘代表一层,在盘在下,小盘在上。要求将塔从A移动到C。按规定,每次只能移动一个盘子,可以将盘子放在三个塔柱中任一个上,但大盘子不能放在小盘子上面。试编程序打印出移塔过程。
输入
输入正整数n
输出
输出移动的过程,每行一个过程
样例输入 复制
2
样例输出 复制
A>B A>C B>C
提示
我们可以发现,要把N片全从A移动到C上,则必须先把A上的N-1片移动到B上,这时可用C作媒介;要把A上的N-1片移动到B上,则先必须把A上的N-2片以B为媒介移动到C上……。这样就是一个递归过程,即深度优先搜索问题。
我们可以定义一个递归过程:MOVE(M,X,Y,Z):表示把X上M片以Y为媒介移动到Z上,这里M<=N,X,Y,Z表示A,B,C三个不同的塔柱。每次移动一片底层盘片,都必须先把其上所有的盘都移走。这里产生的节点是唯一的,即只有一个答案。
话不多说,上代码:
#include <bits/stdc++.h>
using namespace std;
unsigned long long x=1;
int dg(int n,char a,char b,char c){
if(n==1){
cout<<a<<">"<<c<<endl;
x++;
}else{
dg(n-1,a,c,b);
cout<<a<<">"<<c<<endl;
x++;
dg(n-1,b,a,c);
}
}
int main(){
int n;
cin>>n;
dg(n,'A','B','C');
}