1052. 【NOIP2016备赛】方阵操作(square)

本文讲述了如何对n×n矩阵进行高效操作,包括元素修改、行列交换,以及使用两种方法的性能比较,一种暴力但常数大,另一种通过数组优化减少复杂度。
摘要由CSDN通过智能技术生成
题目描述

小 Z 给你一个 n × n 的方阵,要求你完成 Q 次操作:
1. 1 i j k,将 ai,j 修改为 k。
2. 2 i j,交换方阵的第 i 行和第 j 行。
3. 3 i j,交换方阵的第 i 列和第 j 列。
4. 4 输出方阵的全部元素。

输入

从文件 square.in 中读入数据。

输入文件名为 square.in。
第一行,两个正整数 n,Q。
接下来 n 行,每行 n 个正整数 ai,j。
接下来 Q 行,每行若干个正整数,与题面中对应。

输出

输出到文件 square.out 中。

输出文件名为 square.out。
记第 4 种操作的次数为 m,你需要输出 m 块,块与块之间用一个空行隔开,每块输出 n 行n 列的方阵。

样例输入
4 12
8 6 9 7 
4 5 6 6 
0 0 7 0 
8 3 7 5 
1 3 2 3
2 3 2
1 4 2 5
1 1 4 6
2 1 4
4
1 2 4 7
1 1 2 5
2 4 2
2 3 2
2 1 3
4
样例输出
8 5 7 5 
0 3 7 0 
4 5 6 6 
8 6 9 6 

8 6 9 6 
4 5 6 6 
8 5 7 5 
0 3 7 7 
数据范围限制

对于 70% 的数据,n<=100。
对于 100% 的数据,1 <=n<= 300,1 <=m<= 5,1<= ai,j <=1000, 1<= Q<= 500000。

做法一:傻子都会做暴力,时间复杂度 O(nQ + n2m),根据常数大小可以得到 10 ∼ 70 不等的分数。

代码:

#include <bits/stdc++.h>
using namespace std;
int a[1005][1005];
int main()
{
	freopen("square.in","r",stdin);
	freopen("square.out","w",stdout);
	int n,m;
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;++i)
	{
		for(int j=1;j<=n;++j)
		{
			scanf("%d",&a[i][j]);
		}
	}
	for(int i=1;i<=m;++i)
	{
		int x,y,k,z;
		scanf("%d",&k);
		switch(k)
		{
			case 1:
			{
				scanf("%d%d%d",&x,&y,&z);
				a[x][y]=z;
				break;
			}
			case 2:
			{
				scanf("%d%d",&x,&y);
				for(int j=1;j<=n;++j)
				{
					swap(a[x][j],a[y][j]);
				}
				break;
			}
			case 3:
			{
				scanf("%d%d",&x,&y);
				for(int j=1;j<=n;++j)
				{
					swap(a[j][x],a[j][y]);
				}
				break;
			}
			case 4:
			{
				for(int j=1;j<=n;++j)
				{
					for(int h=1;h<=n;++h)
					{
						printf("%d ",a[j][h]);
					}
					printf("\n");
				}
				printf("\n");
				break;
			}
		}
	}
	return 0;
}

做法二:考虑记录两个数组 bc,分别代表行、列的对应情况,c[i]代表第i行在实际输出时输出的是第几行,初始化c[i]=i,交换行的时候只需要交换c[i]c[j]即可,b数组也是一样的。

除了4操作都可以做到 O(1)。时间复杂度 O(Q + n2m),根据常数大小可以得到 80∼100不等的分数。 

代码:

#include <bits/stdc++.h>
using namespace std;
int a[1005][1005];
int c[1005],b[1005];
int main()
{
	freopen("square.in","r",stdin);
	freopen("square.out","w",stdout);
	int n,m;
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=n;j++)
		{
			scanf("%d",&a[i][j]);
		}
	}	
	for(int i=1;i<=n;i++)
	{
		b[i]=i;
	}
	for(int i=1;i<=n;i++)
	{
		c[i]=i;
	}
	for(int i=1;i<=m;i++)
	{
		int x,y,k,z;
		scanf("%d",&k);
		if(k==1)
		{
			scanf("%d%d%d",&x,&y,&z);
			a[b[x]][c[y]]=z;
		} 
		if(k==2)
		{
			scanf("%d%d",&x,&y);
			swap(b[x],b[y]);
		}
		if(k==3)
		{
			scanf("%d%d",&x,&y);
			swap(c[x],c[y]);
		}
		if(k==4)
		{
			for(int j=1;j<=n;j++)
			{
				for(int h=1;h<=n;h++)
				{
					printf("%d ",a[b[j]][c[h]]);
				}
				printf("\n");
			}
			printf("\n");
		}
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值