题目描述
小 Z 给你一个 n × n 的方阵,要求你完成 Q 次操作:
1. 1 i j k,将 ai,j 修改为 k。
2. 2 i j,交换方阵的第 i 行和第 j 行。
3. 3 i j,交换方阵的第 i 列和第 j 列。
4. 4 输出方阵的全部元素。
输入
从文件 square.in
中读入数据。
输入文件名为 square.in。
第一行,两个正整数 n,Q。
接下来 n 行,每行 n 个正整数 ai,j。
接下来 Q 行,每行若干个正整数,与题面中对应。
输出
输出到文件 square.out
中。
输出文件名为 square.out。
记第 4 种操作的次数为 m,你需要输出 m 块,块与块之间用一个空行隔开,每块输出 n 行n 列的方阵。
样例输入
4 12 8 6 9 7 4 5 6 6 0 0 7 0 8 3 7 5 1 3 2 3 2 3 2 1 4 2 5 1 1 4 6 2 1 4 4 1 2 4 7 1 1 2 5 2 4 2 2 3 2 2 1 3 4
样例输出
8 5 7 5 0 3 7 0 4 5 6 6 8 6 9 6 8 6 9 6 4 5 6 6 8 5 7 5 0 3 7 7
数据范围限制
对于 70% 的数据,n<=100。
对于 100% 的数据,1 <=n<= 300,1 <=m<= 5,1<= ai,j <=1000, 1<= Q<= 500000。
做法一:傻子都会做暴力,时间复杂度 O(nQ + n2m),根据常数大小可以得到 10 ∼ 70 不等的分数。
代码:
#include <bits/stdc++.h>
using namespace std;
int a[1005][1005];
int main()
{
freopen("square.in","r",stdin);
freopen("square.out","w",stdout);
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i)
{
for(int j=1;j<=n;++j)
{
scanf("%d",&a[i][j]);
}
}
for(int i=1;i<=m;++i)
{
int x,y,k,z;
scanf("%d",&k);
switch(k)
{
case 1:
{
scanf("%d%d%d",&x,&y,&z);
a[x][y]=z;
break;
}
case 2:
{
scanf("%d%d",&x,&y);
for(int j=1;j<=n;++j)
{
swap(a[x][j],a[y][j]);
}
break;
}
case 3:
{
scanf("%d%d",&x,&y);
for(int j=1;j<=n;++j)
{
swap(a[j][x],a[j][y]);
}
break;
}
case 4:
{
for(int j=1;j<=n;++j)
{
for(int h=1;h<=n;++h)
{
printf("%d ",a[j][h]);
}
printf("\n");
}
printf("\n");
break;
}
}
}
return 0;
}
做法二:考虑记录两个数组 b 和 c,分别代表行、列的对应情况,c[i]代表第i行在实际输出时输出的是第几行,初始化c[i]=i,交换行的时候只需要交换c[i],c[j]即可,b数组也是一样的。
除了4操作都可以做到 O(1)。时间复杂度 O(Q + n2m),根据常数大小可以得到 80∼100不等的分数。
代码:
#include <bits/stdc++.h>
using namespace std;
int a[1005][1005];
int c[1005],b[1005];
int main()
{
freopen("square.in","r",stdin);
freopen("square.out","w",stdout);
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
scanf("%d",&a[i][j]);
}
}
for(int i=1;i<=n;i++)
{
b[i]=i;
}
for(int i=1;i<=n;i++)
{
c[i]=i;
}
for(int i=1;i<=m;i++)
{
int x,y,k,z;
scanf("%d",&k);
if(k==1)
{
scanf("%d%d%d",&x,&y,&z);
a[b[x]][c[y]]=z;
}
if(k==2)
{
scanf("%d%d",&x,&y);
swap(b[x],b[y]);
}
if(k==3)
{
scanf("%d%d",&x,&y);
swap(c[x],c[y]);
}
if(k==4)
{
for(int j=1;j<=n;j++)
{
for(int h=1;h<=n;h++)
{
printf("%d ",a[b[j]][c[h]]);
}
printf("\n");
}
printf("\n");
}
}
return 0;
}