1213. 【最短路径专题】牛的旅行

 

题目描述

农民John的农场里有很多牧区。有的路径连接一些特定的牧区。一片所有连通的牧区称为一个牧场。但是就目前而言,你能看到至少有两个牧区不连通。现在,John想在农场里添加一条路径 ( 注意,恰好一条 )。对这条路径有这样的限制:一个牧场的直径就是牧场中最远的两个牧区的距离 ( 本题中所提到的所有距离指的都是最短的距离 )。考虑如下的两个牧场,图1是有5个牧区的牧场,牧区用“*”表示,路径用直线表示。每一个牧区都有自己的坐标:

图1所示的牧场的直径大约是12.07106, 最远的两个牧区是A和E,它们之间的最短路径是A-B-E。 这两个牧场都在John的农场上。John将会在两个牧场中各选一个牧区,然后用一条路径连起来,使得连通后这个新的更大的牧场有最小的直径。注意,如果两条路径中途相交,我们不认为它们是连通的。只有两条路径在同一个牧区相交,我们才认为它们是连通的。 现在请你编程找出一条连接两个不同牧场的路径,使得连上这条路径后,这个更大的新牧场有最小的直径。

输入

第 1 行:一个整数N (1 <= N <= 150), 表示牧区数;   第 2 到 N+1 行:每行两个整数X,Y ( 0 <= X,Y<= 100000 ), 表示N个牧区的坐标。每个牧区的坐标都是不一样的。   第 N+2 行到第 2*N+1 行:每行包括N个数字 ( 0或1 ) 表示一个对称邻接矩阵。   例如,题目描述中的两个牧场的矩阵描述如下:
   A B C D E F G H
A 0 1  0 0  0 0  0 0
B 1 0  1 1  1 0  0 0
C 0 1  0 0  1 0  0 0
D 0 1  0 0  1 0  0 0
E 0 1  1 1  0 0  0 0
F 0 0  0 0  0 0  1 0
G 0 0  0 0  0 1  0 1
H 0 0  0 0  0 0  1 0
输入数据中至少包括两个不连通的牧区。

输出

只有一行,包括一个实数,表示所求答案。数字保留六位小数。

样例输入
8
10 10
15 10
20 10
15 15
20 15
30 15
25 10
30 10
01000000
10111000
01001000
01001000
01110000
00000010
00000101
00000010
样例输出
22.071068
思路

弗洛伊德算法求出最短路。

找出距离最长的两个牧场,这个就是答案。

#include <bits/stdc++.h>
using namespace std;
double f[151][151],m[151],min1,r,t,x[151],y[151],max1=1e12;
double q(int i,int j)
{
	return sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
}
int main()
{
	int n;
	char c;
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
		cin>>x[i]>>y[i];
	}
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=n;j++)
		{
			cin>>c;
			if(c=='1') f[i][j]=q(i,j);
			else f[i][j]=max1;
		}
	}
	for(int k=1;k<=n;k++)
	{
		for(int i=1;i<=n;i++)
		{
			for(int j=1;j<=n;j++)
			{
				if(i!=j&&i!=k&&j!=k)
				{
					if(f[i][k]<max1-1 && f[k][j]<max1-1)
					{
						if(f[i][j]>f[i][k]+f[k][j])
						{
							f[i][j]=f[i][k]+f[k][j];
						}
					}
				}
			}
		}
	}
	memset(m,0,sizeof(m));
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=n;j++)
		{
			if(f[i][j]<max1-1 && m[i]<f[i][j]) m[i]=f[i][j];
		}
	}
	double min1=1e20;
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=n;j++)
		{
			if(i!=j&&f[i][j]>max1-1)
			{
				t=q(i,j);
				if(min1>m[i]+m[j]+t) min1=m[i]+m[j]+t;
			}
		}
	}
	for(int i=1;i<=n;i++)
	{
		if(m[i]>min1) min1=m[i];
	}
	printf("%.6lf",min1);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值