题目描述
农民John的农场里有很多牧区。有的路径连接一些特定的牧区。一片所有连通的牧区称为一个牧场。但是就目前而言,你能看到至少有两个牧区不连通。现在,John想在农场里添加一条路径 ( 注意,恰好一条 )。对这条路径有这样的限制:一个牧场的直径就是牧场中最远的两个牧区的距离 ( 本题中所提到的所有距离指的都是最短的距离 )。考虑如下的两个牧场,图1是有5个牧区的牧场,牧区用“*”表示,路径用直线表示。每一个牧区都有自己的坐标:
图1所示的牧场的直径大约是12.07106, 最远的两个牧区是A和E,它们之间的最短路径是A-B-E。 这两个牧场都在John的农场上。John将会在两个牧场中各选一个牧区,然后用一条路径连起来,使得连通后这个新的更大的牧场有最小的直径。注意,如果两条路径中途相交,我们不认为它们是连通的。只有两条路径在同一个牧区相交,我们才认为它们是连通的。 现在请你编程找出一条连接两个不同牧场的路径,使得连上这条路径后,这个更大的新牧场有最小的直径。
输入
第 1 行:一个整数N (1 <= N <= 150), 表示牧区数; 第 2 到 N+1 行:每行两个整数X,Y ( 0 <= X,Y<= 100000 ), 表示N个牧区的坐标。每个牧区的坐标都是不一样的。 第 N+2 行到第 2*N+1 行:每行包括N个数字 ( 0或1 ) 表示一个对称邻接矩阵。 例如,题目描述中的两个牧场的矩阵描述如下:
A B C D E F G H
A 0 1 0 0 0 0 0 0
B 1 0 1 1 1 0 0 0
C 0 1 0 0 1 0 0 0
D 0 1 0 0 1 0 0 0
E 0 1 1 1 0 0 0 0
F 0 0 0 0 0 0 1 0
G 0 0 0 0 0 1 0 1
H 0 0 0 0 0 0 1 0
输入数据中至少包括两个不连通的牧区。
输出
只有一行,包括一个实数,表示所求答案。数字保留六位小数。
样例输入
8 10 10 15 10 20 10 15 15 20 15 30 15 25 10 30 10 01000000 10111000 01001000 01001000 01110000 00000010 00000101 00000010
样例输出
22.071068
思路
弗洛伊德算法求出最短路。
找出距离最长的两个牧场,这个就是答案。
#include <bits/stdc++.h>
using namespace std;
double f[151][151],m[151],min1,r,t,x[151],y[151],max1=1e12;
double q(int i,int j)
{
return sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
}
int main()
{
int n;
char c;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
cin>>x[i]>>y[i];
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
cin>>c;
if(c=='1') f[i][j]=q(i,j);
else f[i][j]=max1;
}
}
for(int k=1;k<=n;k++)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(i!=j&&i!=k&&j!=k)
{
if(f[i][k]<max1-1 && f[k][j]<max1-1)
{
if(f[i][j]>f[i][k]+f[k][j])
{
f[i][j]=f[i][k]+f[k][j];
}
}
}
}
}
}
memset(m,0,sizeof(m));
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(f[i][j]<max1-1 && m[i]<f[i][j]) m[i]=f[i][j];
}
}
double min1=1e20;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(i!=j&&f[i][j]>max1-1)
{
t=q(i,j);
if(min1>m[i]+m[j]+t) min1=m[i]+m[j]+t;
}
}
}
for(int i=1;i<=n;i++)
{
if(m[i]>min1) min1=m[i];
}
printf("%.6lf",min1);
return 0;
}