光源显色指数基本知识及测量方法

一 光源显色指数的基本知识


      牛顿在1664年用棱镜把白色的太阳光色散成不同色调的光谱,奠定了光颜色的物理基础。目前大家普遍接受的光是以电磁波方式传递的一种特殊物质,可见光的波长范围约为380nm~780nm,有了可见光,人眼才能看到各种物品的颜色。
      长期以来,人类适应于在日光下工作,夜晚则靠火焰取得光亮,在这种自然光条件下,人的颜色视觉是恒定的,认为在这两种光源下看到的颜色是物体的“真实”颜色。现代的一些新光源,如LED、汞灯、钠灯等,其光色可能与日光相似,但其光谱功率分布与它们却有很大差别,因此,人们在这些新光源下所看到的物体颜色与在和日光下所看到的颜色是不同的。例如,在日光下观察一块花布,再把它拿到高压汞灯下观察,就会发现,某些颜色已变了色,如粉色变成了紫色,蓝色变成了蓝紫色,在高压汞灯下,物体失去了“真实”颜色,或颜色有所失真。
      照明光源的显色性能是非常重要的,比如青少年的护眼灯标准灯中明确提出显色指数要大于80,很多工程照明标准中也对显色指数提出明确要求。


1.1  CRI显色指数


      为了评估这种情况,CIE推出了光源显色指数计算方法(1974年修订),采用14 种标准样品,分别用标准光源和待测光源照明对比进行照明,评估标准样品在两种光源照明下的颜色差异,进而评估待测光源显色性能,即显色指数CRI,数值越大,显色性越好,数值越小,显色性越差。这14种标准样品的模拟颜色如图2所示。


1.2  CQS


      CRI色彩再现性指数的有一定的缺陷,北美照明工程学会(IES)提出一种用于评估光源颜色质量的指标CQS (Color Quality Scale)色质指数,更全面地评估了光源对物体颜色的还原能力,其采用新的14种标准样品模拟颜色如图2所示。


1.3  TM30


      北美照明学会(IES)在2015年5月批准了名为IES Method for Evaluating Light Source Color Rendition(TM-30-15)的标准,评价参考样板为99个,是目前公认的更加准确、更加客观的光色评价指标,包括逼真度Rf,色域指数Rg。


1.4 TLCI-2012


      电视光源一致性指数(TLCI-2012)由英国广播公司(BBC)启动旨在解决电视和视频摄像机的显色性度量指标。

二 显色指数的测量方法


      这么多显色指数令人目不暇接,如何测量这些显色指数呢?通常可以采用分光辐射照度计或分光辐射亮度计(XYZ型的色彩照度计/亮度计是无法测量显色指数的)。
      从测试准确性和操作的便捷性方面推荐CL800分光辐射照度计。

三 CL800仪器概述


       CL800分光辐射照度计是一款国产化元件占比高达98%的国产便携式照度计。照度计采用高精度凹面光栅作为分光元器件,可采集350~800nm波长范围的光源辐射照度光谱,输出1nm间隔辐照度光谱,测量量程最高可达200000 lx。
       仪器配置2.8英寸TFT电容触摸屏、4000mAh锂离子电池,蓝牙/WIFI多功能芯片,大容量存储器。
      仪器不仅可以测量辐照度光谱、照度、色温、显色指数、白平衡等技术参数,还可以测量植物生长灯参数、UVI指数、蓝光危害、显示器色域、均匀性、CQS、TM-30、TLCI-2012、闪烁频率等参数,功能强大,应用广泛。


 

四 CL800测试显色指数的方法


      CL800分光辐射照度计操作方法简单,非常符合国人操作习惯,具体操作如下:
      3.1 仪器开机,开关拨动到位置1。
      3.2 颜色指数(color index)选择”CRI Ev Duv”或“CQS index” 或“TM30 index”。
      3.3 待照明光源预热完毕,测量口(余弦校正器)迎着光线,按测量按键,即完成显色指数等光度参数测量。
     3.4 点击显示屏光谱图标或滑动屏幕各种图片可显示出来,也可用免费的专业PC上位机软件HIQC在电脑端查看,并可导出1nm间隔的光谱。

数据集介绍:野生动物目标检测数据集 一、基础信息 数据集名称:野生动物目标检测数据集 图片数量: - 训练集:4,181张图片 - 验证集:1,212张图片 - 测试集:610张图片 总计:6,003张航拍及自然场景图片 分类类别: 涵盖23类野生动物,包括: - 濒危物种(北极熊、犀牛、熊猫) - 大型哺乳动物(大象、河马、长颈鹿) - 猛禽类(鹰、鹦鹉、企鹅) - 食肉动物(狮子、猎豹、美洲豹) - 草食动物(斑马、鹿、山羊) 标注格式: YOLO格式标注,包含边界框坐标与类别标签,适配主流目标检测框架。 数据特性: 航拍视角与地面视角相结合,包含动物群体活动和个体行为场景。 二、适用场景 生态保护监测系统: 构建野生动物种群识别系统,支持自然保护区自动监测动物迁徙和栖息地活动。 智能林业管理: 集成至森林巡护无人机系统,实时检测濒危物种并预警盗猎行为。 动物行为研究: 为科研机构提供标注数据支撑,辅助研究动物种群分布与行为特征。 自然纪录片制作: AI预处理工具开发,快速定位视频素材中的特定物种片段。 教育科普应用: 用于野生动物识别教育软件,支持互动式物种学习功能开发。 三、数据集优势 物种覆盖全面: 包含非洲草原系、极地系、森林系等23类特色动物,特别涵盖10种IUCN红色名录物种。 多场景适配: 整合航拍与地面视角数据,支持开发不同观测高度的检测模型。 标注质量可靠: 经动物学专家校验,确保复杂场景(群体/遮挡)下的标注准确性。 模型兼容性强: 原生YOLO格式可直接应用于YOLOv5/v7/v8等系列模型训练。 生态研究价值: 特别包含熊科动物(棕熊/北极熊/熊猫)细分类别,支持濒危物种保护研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值