《7天快速通过AI/CV面试》专栏导言,强烈推荐投递岗位前,要必看

本文是《7天快速通过AI/CV面试》专栏导言,强调了准备简历和面试的重要性。作者提供了一系列的面试和简历准备资源,包括必看视频、撰写简历的要点以及面试技巧。提醒读者重视简历撰写,避免简历中的常见误区,并分享了个人求职经历,以帮助求职者更好地应对面试和提高成功率。专栏涵盖了AI面试、图像处理和算法等领域的问题汇总。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


当我开始着手准备认真、系统的开始第一个专栏的时候,我就在思考: 目前可搜罗的资料里,还缺个什么,能让我来补上

经过在知乎和微信聊天群的小伙伴交流,发现一个入门的、系统的、详略得当的面试专栏,是大家所期待的。

于是,在结合了网友和我自身的面试经历,汇总出在面试阶段,面试官最喜欢主动发问,或者延续发问的一些问题,并给出详尽的解答,略微的追求一些深度。

一、准备简历前必看

开始准备简历,和开始投递简历之前,一定要先看看这几个视频(先别投递,先看):

  1. 必看:【系统求职课】盲目投递=浪费简历,求职必备的投递技巧&信息差!
  2. 必看:HR常见压价话术+谈薪公式!12年HR总监的谈薪宝典
  3. 如何自我介绍
  4. 面试只顾着自我介绍,你很难拿到高薪资!
  5. 面试被问过往薪资?这么答offer薪资涨20%
  6. 面试不会谈薪资?这么说轻松多拿2-3k!
  7. 面试时,面试官给不到你想要的薪资,你还会来吗,遇到这种情况你知道怎样回答吗?
  8. 面试被问缺点,1个雷区➕4步满分💯模板(我答案:我之前的团队规模比较小,欠缺大规模团队项目组织的管理经验)
  9. 面试结尾这么说,offer拿到手软!

技术面的注意事项:

  1. 面试官问:“你的项目中有什么难点吗?”

需要的注意事项:

  1. 职场中这三个字(我觉得),千万不能说!

当然还有很多其他的点,需要在撰写简历和面试期间需要刻意注意的地方。但是,原则就是一个:提前准备,四处求索,多多探求。

可以是师兄师姐、亲朋好友、领域大拿都行,多问一句,总是好事,千万不要碍于面子,死扛。

二、撰写简历必看

当你把前面的视频看完后,你就掌握了这里:

  1. 简历怎么投?
  2. 整个求职的流程是怎么的?
  3. 什么阶段该问什么问题?
  4. 哪些话在投递简历和面试不能乱说?
  5. 如何争取更高薪资?

但是,还有一个,那就是咱们简历还没有开始准备。下面,我就简单的说下简历的准备,具体怎么写,你还是需要根据自己的项目进行整理。

  1. 找一个非常好的简历模版,我现在使用的是“全民简历”这个软件,便宜好用
  2. 简历上只写重要信息,乱七八糟,和求职无关的不要写
  3. 项目信息是重点,项目内容按序号记录,简洁有条理(重点)
  4. 5年以内的工作经验,简历1-2页,很丰富的可以到3页

(订阅系列专栏的,可以加我VX,将模版发我看看,可以提提建议)


简历的撰写真的非常重要、非常重要、非常重要。如果你有下面几种情况,回来改简历:

  1. 主动投递简历,无人问津
  2. 投递成功,已读不回
  3. 约了面试,总是止步于一面
  4. 很长时间,没有收到 offer

改简历、改简历、还是TM的改简历。改什么呢?

  • 换模版,简历模版决定了一个简历最大的结构
  • 改简历结构,去除掉无关的、不重要的内容,保留最有价值的部分,避免臃肿
  • 改项目介绍,尽量条理清晰,一目了然,STAR 法则

最后,如果还不放心的,把简历拿给别人看,让别人给你意见,最好是同领域的,有经验的前辈,他们给出的意见会更加的重要。


尤其是在项目中的介绍,和面试阶段,预设问题,提前做好准备:

  1. 项目介绍口述
  2. 你在项目中,负责什么内容?做了什么贡献?
  3. 做了哪些改进?为什么这样改?结果怎么样?
  4. 数据化

撰写《7天快速通过AI/CV面试》专栏,我们需要做到什么?

  1. 及时:是对专栏文章进行及时的更新,包括读者反馈的问题,均可以在评论区或私信中提出,我们会及时的更新文章;
  2. 准确:尽可能的使得文章的回答内容准确,为了做到准确,文章尽可能多的参考原始论文的描述和大咖的介绍。但是无可避免的肯定还会存在着错误,如果发现了问题,欢迎评论区批评或私信聊;
  3. 全面:面试题目是数不尽的,专栏尽可能的将面试过程中常遇到的问题,进行介绍。不会停更,有新的就会补充上去,力求多角度、全面、深入。当然,也欢迎你们来补充题目。

学习《7天快速通过AI/CV面试》专栏,你们需要做什么?

  1. 多思辨:专栏内的文章,均来自于我自己的思考和论文资料,对于好的网上资料也会附在文章中。但是,难免会存在考虑不全和错误的地方。希望在学习的过程中,多思考,what、how、why
  2. 多理解:回答内容是比较死的,但是经过阅读的加工,转化为自己的认知,就要多理解。想想前因后果,想想他存在的意义;
  3. 多实践:多动手,多看原始论文。学习作者是怎么思考的,是怎么推演出这块内容的。

相信在本系列的文章的引导下,再加上严格执行上述3个部分,你一定会收获颇丰。剥开人工智能的前世今生和来龙去脉,你可以获得以下的成功:

  1. 知识系统的完善
  2. 培养自学和查询资料的习惯
  3. ChatGPT辅助自学的方法
  4. 一份又一份金闪闪的满意offer
  5. ···

与此同时,在AIGC时代,我们也会用ChatGPT辅助我们理解问题。这块在本系列文章中,无时无刻不在贯穿其中。(真的很好用)

最后呢,我简单的介绍下自己在硕士研究生二年级,到毕业那会,找工作遇到的窘境。希望看到这里的小伙伴,都能够引以为戒,不要再犯同样的错误。


我是在研二下学期的 6 月份的时候,就开始想着找一份实习的工作。主要是因为我还没有参加过工作,本科毕业后就直接读研了,既没有实习经历,也没有工作和求职经历。

所以,我就想着还是需要找一份实习工作,补充下简历。否则在真正开始校招(秋招和春招)的时候,我的简历上面都没啥可写,尤其是工作经历那一栏。于是我就开始写简历,着手准备投下实习。

写简历呢,我也没有什么经验。于是就找到了我本科毕业时候,准备的一个简历模板,是一个当时找导师时候,自我介绍的一个版本。在这个基础上面,进行了修改和补充,就得到了我实习时候使用的一个简历了。

也是顺利,在投递后邀约的第一次面试,我就成功的获得了offer。当时我们学院和我一届的还有多个同学去应聘实习,他们后来都没有接到通知。我以为是自己的简历好,再加上面试的表现好,得到了这次实习的机会。殊不知这种胡乱的自我认同,为后面的校招埋下了雷。

  1. 时间重叠:实习阶段让我学习了很多,进步也比较的快,实习的企业也是一个国内较大的研究院。实习的时间恰好是在暑假,一些秋招也是在暑假。两个时间重叠,少了很多时间认真的准备;
  2. 简历排版差:我的简历是那种彩色的,左右排布的。在后期我看了很多同学和网上大V推荐的简历模版后,我才发觉我那个不是HR喜欢的形式。但是知道的时候比较靠后了,失去了很多的机会;
  3. 准备不充分:不充分体现在对简历中自己的项目理解的深度不够,思考不够;对相关的技术实践的不够,最最关键的是对深度学习的整个发展的认识不够,所以遇到一些技术的时候,理解是孤立的,没有连贯性,不知道前因后果。这样面试官深入一点提问,就很容易卡壳。
  4. 面试题库不足:这里可以归为准备不充分,没有预先好好的罗列出面试官可能会问的问题,如何回答等等;经历了多次面试后,才总结出问题所在。

这些问题也让我吃到了苦头,在整个秋招都没有收获自己满意的 offer,错过了很好的机会。当然也有 offer,只是不是自己满意的。直到快临近寒假的时候,才敲定了一个多个方面都相对较满意的offer。


提到自己的一些经历,是希望能够让更多的小伙伴提前做准备。包括准备写简历、准备笔试内容、准备面试内容。

  • 梳理自己过去学习的相关知识,参与的项目和技术,够不够深入?
  • 还有哪些问题,是面试过程中,面试官最喜欢提问的;
  • 假如你是面试官,针对这个简历,你会提出什么问题?

为了达到上述的效果,你可以同学与同学之间相互的提问,演练这个面试过程。尤其是简历,也可以发给自己的小伙伴看看,让他们指正哪些的非必要的,哪些又是需要补充的,哪些又是不足的,需要修改的。

现在是六月底,很多的大公司都该开始准备进行秋招了。珍惜应届生身份,尤其是一些事业单位(编制)、国企和大厂,对应届生的倾斜程度,不是一般的大,错过了那就这辈子没有第二次了。

到了9月和10月,是秋招的高峰期,这段时间也是大厂在校内进行宣讲的高峰期。暑假准备和练手,迎接9月份最疯狂的offer雨。

就这些吧,希望本系列专栏和上述的经历,对年轻的你们,有所帮助。无论之前怎么样,现在认真、系统的准备,都为时不晚。加油,祝喜提offer。

专栏目前的文章都是关于技术层面的,后面也会尽快的补充关于如何撰写简历?和分享一些简历模版。还有如何和HR聊薪资?手里多个offer后,需要问些什么问题,帮助我们做最终的选择。敬请期待

三、专栏内容

3.1、AI面试目录汇总

  1. 【AI面试】CNN 和 transformer 的问题汇总
  2. 【AI面试】NMS 与 Soft NMS 的辨析
  3. 【AI面试】L1 loss、L2 loss和Smooth L1 Loss,L1正则化和L2正则化
  4. 【AI面试】BN(Batch Norm)批量归一化
  5. 【AI面试】hard label与soft label,Label Smoothing Loss 和 Smooth L1 Loss
  6. 【AI面试】CrossEntropy Loss 、Balanced Cross Entropy、 Dice Loss 和 Focal Loss 横评对比
  7. 【AI面试】损失函数(Loss),定义、考虑因素,和怎么来的
  8. 【AI面试】Dropout、SoftMax、KNN、K-means等问题
  9. 【AI面试】目标检测中one-stage、two-stage算法的内容和优缺点对比汇总
  10. 【AI面试】Anchor based 、 Anchor free 和 no anchor 的辨析
  11. 【AI面试】RoI Pooling 和 RoI Align 辨析
  12. 【AI面试】降低过拟合的方式方法横评探究

3.2、图像处理领域目录汇总

  1. 【CV面试】上采样与下采样
  2. 【CV面试】直方图与直方图均衡化histogram equalization
  3. 【CV面试】Canny边缘检测算法与原理
  4. 【CV面试】霍夫变换直线检测、圆检测
  5. 【CV面试】图像分割算法
  6. 【CV面试】RGB2GRAY、贝叶斯问题、cv2.add和cv2.addWeighted

3.3、算法目录汇总

  1. 【算法面试】贪心算法(Greedy Algorithm)
  2. 【算法面试】回溯算法(Back Tracking)
  3. 【算法面试】条件概率与贝叶斯定理
  4. 【算法面试】排序算法之冒泡排序
  5. 【算法面试】大数定律与中心极限定律

还有许多文章没有来得及补充的,直接去看专栏主页吧,如果你也觉得很适合你,那就一杯咖啡买一个吧。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

钱多多先森

你的鼓励,是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值