当我开始着手准备认真、系统的开始第一个专栏的时候,我就在思考: 目前可搜罗的资料里,还缺个什么,能让我来补上。
经过在知乎和微信聊天群的小伙伴交流,发现一个入门的、系统的、详略得当的面试专栏,是大家所期待的。
于是,在结合了网友和我自身的面试经历,汇总出在面试阶段,面试官最喜欢主动发问,或者延续发问的一些问题,并给出详尽的解答,略微的追求一些深度。
一、准备简历前必看
开始准备简历,和开始投递简历之前,一定要先看看这几个视频(先别投递,先看):
- 必看:【系统求职课】盲目投递=浪费简历,求职必备的投递技巧&信息差!
- 必看:HR常见压价话术+谈薪公式!12年HR总监的谈薪宝典
- 如何自我介绍
- 面试只顾着自我介绍,你很难拿到高薪资!
- 面试被问过往薪资?这么答offer薪资涨20%
- 面试不会谈薪资?这么说轻松多拿2-3k!
- 面试时,面试官给不到你想要的薪资,你还会来吗,遇到这种情况你知道怎样回答吗?
- 面试被问缺点,1个雷区➕4步满分💯模板(我答案:我之前的团队规模比较小,欠缺大规模团队项目组织的管理经验)
- 面试结尾这么说,offer拿到手软!
技术面的注意事项:
需要的注意事项:
当然还有很多其他的点,需要在撰写简历和面试期间需要刻意注意的地方。但是,原则就是一个:提前准备,四处求索,多多探求。
可以是师兄师姐、亲朋好友、领域大拿都行,多问一句,总是好事,千万不要碍于面子,死扛。
二、撰写简历必看
当你把前面的视频看完后,你就掌握了这里:
- 简历怎么投?
- 整个求职的流程是怎么的?
- 什么阶段该问什么问题?
- 哪些话在投递简历和面试不能乱说?
- 如何争取更高薪资?
但是,还有一个,那就是咱们简历还没有开始准备。下面,我就简单的说下简历的准备,具体怎么写,你还是需要根据自己的项目进行整理。
- 找一个非常好的简历模版,我现在使用的是“全民简历”这个软件,便宜好用
- 简历上只写重要信息,乱七八糟,和求职无关的不要写
- 项目信息是重点,项目内容按序号记录,简洁有条理(重点)
- 5年以内的工作经验,简历1-2页,很丰富的可以到3页
(订阅系列专栏的,可以加我VX,将模版发我看看,可以提提建议)
简历的撰写真的非常重要、非常重要、非常重要。如果你有下面几种情况,回来改简历:
- 主动投递简历,无人问津
- 投递成功,已读不回
- 约了面试,总是止步于一面
- 很长时间,没有收到 offer
改简历、改简历、还是TM的改简历。改什么呢?
- 换模版,简历模版决定了一个简历最大的结构
- 改简历结构,去除掉无关的、不重要的内容,保留最有价值的部分,避免臃肿
- 改项目介绍,尽量条理清晰,一目了然,STAR 法则
最后,如果还不放心的,把简历拿给别人看,让别人给你意见,最好是同领域的,有经验的前辈,他们给出的意见会更加的重要。
尤其是在项目中的介绍,和面试阶段,预设问题,提前做好准备:
- 项目介绍口述
- 你在项目中,负责什么内容?做了什么贡献?
- 做了哪些改进?为什么这样改?结果怎么样?
- 数据化
撰写《7天快速通过AI/CV面试》专栏,我们需要做到什么?
- 及时:是对专栏文章进行及时的更新,包括读者反馈的问题,均可以在评论区或私信中提出,我们会及时的更新文章;
- 准确:尽可能的使得文章的回答内容准确,为了做到准确,文章尽可能多的参考原始论文的描述和大咖的介绍。但是无可避免的肯定还会存在着错误,如果发现了问题,欢迎评论区批评或私信聊;
- 全面:面试题目是数不尽的,专栏尽可能的将面试过程中常遇到的问题,进行介绍。不会停更,有新的就会补充上去,力求多角度、全面、深入。当然,也欢迎你们来补充题目。
学习《7天快速通过AI/CV面试》专栏,你们需要做什么?
- 多思辨:专栏内的文章,均来自于我自己的思考和论文资料,对于好的网上资料也会附在文章中。但是,难免会存在考虑不全和错误的地方。希望在学习的过程中,多思考,what、how、why;
- 多理解:回答内容是比较死的,但是经过阅读的加工,转化为自己的认知,就要多理解。想想前因后果,想想他存在的意义;
- 多实践:多动手,多看原始论文。学习作者是怎么思考的,是怎么推演出这块内容的。
相信在本系列的文章的引导下,再加上严格执行上述3个部分,你一定会收获颇丰。剥开人工智能的前世今生和来龙去脉,你可以获得以下的成功:
- 知识系统的完善
- 培养自学和查询资料的习惯
- ChatGPT辅助自学的方法
- 一份又一份金闪闪的满意offer
- ···
与此同时,在AIGC
时代,我们也会用ChatGPT
辅助我们理解问题。这块在本系列文章中,无时无刻不在贯穿其中。(真的很好用)
最后呢,我简单的介绍下自己在硕士研究生二年级,到毕业那会,找工作遇到的窘境。希望看到这里的小伙伴,都能够引以为戒,不要再犯同样的错误。
我是在研二下学期的 6 月份的时候,就开始想着找一份实习的工作。主要是因为我还没有参加过工作,本科毕业后就直接读研了,既没有实习经历,也没有工作和求职经历。
所以,我就想着还是需要找一份实习工作,补充下简历。否则在真正开始校招(秋招和春招)的时候,我的简历上面都没啥可写,尤其是工作经历那一栏。于是我就开始写简历,着手准备投下实习。
写简历呢,我也没有什么经验。于是就找到了我本科毕业时候,准备的一个简历模板,是一个当时找导师时候,自我介绍的一个版本。在这个基础上面,进行了修改和补充,就得到了我实习时候使用的一个简历了。
也是顺利,在投递后邀约的第一次面试,我就成功的获得了offer。当时我们学院和我一届的还有多个同学去应聘实习,他们后来都没有接到通知。我以为是自己的简历好,再加上面试的表现好,得到了这次实习的机会。殊不知这种胡乱的自我认同,为后面的校招埋下了雷。
- 时间重叠:实习阶段让我学习了很多,进步也比较的快,实习的企业也是一个国内较大的研究院。实习的时间恰好是在暑假,一些秋招也是在暑假。两个时间重叠,少了很多时间认真的准备;
- 简历排版差:我的简历是那种彩色的,左右排布的。在后期我看了很多同学和网上大V推荐的简历模版后,我才发觉我那个不是HR喜欢的形式。但是知道的时候比较靠后了,失去了很多的机会;
- 准备不充分:不充分体现在对简历中自己的项目理解的深度不够,思考不够;对相关的技术实践的不够,最最关键的是对深度学习的整个发展的认识不够,所以遇到一些技术的时候,理解是孤立的,没有连贯性,不知道前因后果。这样面试官深入一点提问,就很容易卡壳。
- 面试题库不足:这里可以归为准备不充分,没有预先好好的罗列出面试官可能会问的问题,如何回答等等;经历了多次面试后,才总结出问题所在。
这些问题也让我吃到了苦头,在整个秋招都没有收获自己满意的 offer,错过了很好的机会。当然也有 offer,只是不是自己满意的。直到快临近寒假的时候,才敲定了一个多个方面都相对较满意的offer。
提到自己的一些经历,是希望能够让更多的小伙伴提前做准备。包括准备写简历、准备笔试内容、准备面试内容。
- 梳理自己过去学习的相关知识,参与的项目和技术,够不够深入?
- 还有哪些问题,是面试过程中,面试官最喜欢提问的;
- 假如你是面试官,针对这个简历,你会提出什么问题?
为了达到上述的效果,你可以同学与同学之间相互的提问,演练这个面试过程。尤其是简历,也可以发给自己的小伙伴看看,让他们指正哪些的非必要的,哪些又是需要补充的,哪些又是不足的,需要修改的。
现在是六月底,很多的大公司都该开始准备进行秋招了。珍惜应届生身份,尤其是一些事业单位(编制)、国企和大厂,对应届生的倾斜程度,不是一般的大,错过了那就这辈子没有第二次了。
到了9月和10月,是秋招的高峰期,这段时间也是大厂在校内进行宣讲的高峰期。暑假准备和练手,迎接9月份最疯狂的offer雨。
就这些吧,希望本系列专栏和上述的经历,对年轻的你们,有所帮助。无论之前怎么样,现在认真、系统的准备,都为时不晚。加油,祝喜提offer。
专栏目前的文章都是关于技术层面的,后面也会尽快的补充关于如何撰写简历?和分享一些简历模版。还有如何和HR聊薪资?手里多个offer后,需要问些什么问题,帮助我们做最终的选择。敬请期待
三、专栏内容
3.1、AI面试目录汇总
- 【AI面试】CNN 和 transformer 的问题汇总
- 【AI面试】NMS 与 Soft NMS 的辨析
- 【AI面试】L1 loss、L2 loss和Smooth L1 Loss,L1正则化和L2正则化
- 【AI面试】BN(Batch Norm)批量归一化
- 【AI面试】hard label与soft label,Label Smoothing Loss 和 Smooth L1 Loss
- 【AI面试】CrossEntropy Loss 、Balanced Cross Entropy、 Dice Loss 和 Focal Loss 横评对比
- 【AI面试】损失函数(Loss),定义、考虑因素,和怎么来的
- 【AI面试】Dropout、SoftMax、KNN、K-means等问题
- 【AI面试】目标检测中one-stage、two-stage算法的内容和优缺点对比汇总
- 【AI面试】Anchor based 、 Anchor free 和 no anchor 的辨析
- 【AI面试】RoI Pooling 和 RoI Align 辨析
- 【AI面试】降低过拟合的方式方法横评探究
3.2、图像处理领域目录汇总
- 【CV面试】上采样与下采样
- 【CV面试】直方图与直方图均衡化histogram equalization
- 【CV面试】Canny边缘检测算法与原理
- 【CV面试】霍夫变换直线检测、圆检测
- 【CV面试】图像分割算法
- 【CV面试】RGB2GRAY、贝叶斯问题、cv2.add和cv2.addWeighted
3.3、算法目录汇总
- 【算法面试】贪心算法(Greedy Algorithm)
- 【算法面试】回溯算法(Back Tracking)
- 【算法面试】条件概率与贝叶斯定理
- 【算法面试】排序算法之冒泡排序
- 【算法面试】大数定律与中心极限定律
还有许多文章没有来得及补充的,直接去看专栏主页吧,如果你也觉得很适合你,那就一杯咖啡买一个吧。