leetcode78子集-回溯-java

48 篇文章 0 订阅
9 篇文章 0 订阅

说明:问题描述来源leetcode:

题解1

/**
 * @author xin麒
 * @date 2022/12/14 21:14
 * 给你一个整数数组nums ,数组中的元素 互不相同 。返回该数组所有可能的子集(幂集)。
 * 解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。
 * 示例 1:输入:nums = [1,2,3]    输出:[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]
 * 示例 2:输入:nums = [0]        输出:[[],[0]]
 * 提示:1 <= nums.length <= 10   -10 <= nums[i] <= 10    nums 中的所有元素 互不相同
 */
public class Solution {
    List<List<Integer>> result = new ArrayList<>();
    LinkedList<Integer> path = new LinkedList<>();

    private int[] nums;

    public List<List<Integer>> subsets(int[] nums) {
        this.nums = nums;
        backTracking(0);
        return result;
    }

    private void backTracking(int startIndex) {
        if (path.size() != 0 && startIndex < nums.length && path.get(0) == nums[startIndex] ) {
            List<Integer> list = new ArrayList<>();
            list.add(nums[startIndex]);
            result.add(list);
        }
        result.add(new ArrayList<>(path));

        for (int i = startIndex; i < nums.length; i++) {

            path.add(nums[i]);

            backTracking(i + 1);
            path.removeLast();

        }
    }


}

直接通过模板搞起,然后再慢慢补充,把测试用例带入,肉眼debug、排除,然后基本就可以了。

但是很遗憾,没能100%

在这里插入图片描述

怎么回事呢?于是我记起来全局变量的搜索速度是比局部变量慢的!

于是改进下:

/**
 * @author xin麒
 * @date 2022/12/14 22:30
 */
public class Solution2 {
    List<List<Integer>> result = new ArrayList<>();
    LinkedList<Integer> path = new LinkedList<>();


    public List<List<Integer>> subsets(int[] nums) {
        backTracking( nums,0);
        return result;
    }

    private void backTracking(int[] nums,int startIndex) {
        if (path.size() != 0 && startIndex < nums.length && path.get(0) == nums[startIndex] ) {
            List<Integer> list = new ArrayList<>();
            list.add(nums[startIndex]);
            result.add(list);
        }
        result.add(new ArrayList<>(path));

        for (int i = startIndex; i < nums.length; i++) {

            path.add(nums[i]);

            backTracking(nums,i + 1);
            path.removeLast();

        }
    }

}

end

这个可以nice!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值