1922: [Sdoi2010]大陆争霸|dijkstra

最短路大法好。Orz黄学长

d1[x],d2[x] 为城市x的到达时间,可进入时间
max(d1[x],d2[x]) 为真实的进入时间
d[x] 记录城市x被多少个城市保护
每次堆中取出一个真实进入时间最小的城市
更新它所通往的城市的 d1 ,保护城市的 d2
保护城市的 d1
d=0 ,则可入堆
复杂度 (n+m)log2n

黄学长写的比较清楚了,似乎很多人都用了矩阵存图的样子,怪不得一遍卡进第一页

#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<vector>
#include<cmath>
#include<complex>
#include<queue>
#include<map>
#include<set>
#define inf 11111111111111LL
#define ll long long
#define pa pair<ll,int>
#define N 80005
using namespace std;
int sc()
{
    int i=0; char c=getchar();
    while( c>'9' || c<'0' ) c=getchar();
    while( c>='0' && c<='9' )i=i*10+c-'0',c=getchar();
    return i;
}
ll d1[N],d2[N],d[N];
int Head[N],Nxt[N],Lst[N],vis[N];
int head[N],nxt[N],lst[N],v[N];
int n,m,tot,Tot;
priority_queue<pa,vector<pa>,greater<pa> >q;
void insert(int x,int y,int z)
{
    lst[++tot]=y;nxt[tot]=head[x];head[x]=tot;v[tot]=z;
}
void insert(int x,int y)
{
    d[y]++;Lst[++Tot]=y;Nxt[Tot]=Head[x];Head[x]=Tot;
}
void dijkstra()
{
    for(int i=1;i<=n;i++)d1[i]=inf;
    q.push(make_pair(d1[1]=d2[1]=0,1));
    while(!q.empty())
    {
        int x=q.top().second;q.pop();
        if(vis[x])continue;vis[x]=1;
        ll now=max(d1[x],d2[x]);
        for(int i=head[x];i;i=nxt[i])
            if(now+v[i]<d1[lst[i]])
            {
                d1[lst[i]]=now+v[i];
                if(d[lst[i]]==0)q.push(make_pair(max(d1[lst[i]],d2[lst[i]]),lst[i]));
            }
        for(int i=Head[x];i;i=Nxt[i])
        {
            d2[Lst[i]]=max(d2[Lst[i]],now);
            if(!(--d[Lst[i]]))q.push(make_pair(max(d1[Lst[i]],d2[Lst[i]]),Lst[i]));
        }
    }
}
int main()
{
    n=sc();m=sc();
    for(int i=1;i<=m;i++)
    {
        int x=sc(),y=sc(),z=sc();
        insert(x,y,z);
    }
    for(int i=1;i<=n;i++)
    {
        int s=sc();
        for(int j=1;j<=s;j++)
        {
            int x=sc();
            insert(x,i);
        }
    }
    dijkstra();
    printf("%lld\n",max(d1[n],d2[n]));
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值