4516: [Sdoi2016]生成魔咒|后缀数组|线段树|ST表

将原串倒过来,每次添加一个字符相当于增加一个后缀。
问题转化为向集合中动态添加后缀求本质不同的字串的个数,离线求出 SA
找出当前添加的串与集合中的串的最大的 LCP ,就是重复出现的子串的个数,线段树维护集合中rank的前驱和后继,
考场上的原代码(SDOI唯一A掉的一道题QAQ)

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#define N 100555
using namespace std;
int sc()
{
    int i=0,f=1;char c=getchar();
    while(c>'9'||c<'0'){if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9')i=i*10+c-'0',c=getchar();
    return i*f;
}
struct W{int x,p;}b[N];
int st[N][19],pre[N*6],nxt[N*6];
int a[N],t1[N],t2[N],cc[N],sa[N],rank[N],height[N];
int n,cnt,len;
long long ans[N];
bool cmp(W a,W b)
{
    return a.x<b.x;
}
bool cmp1(int *y,int a,int b,int k)
{
    int a1=y[a],b1=y[b];
    int a2=a+k>=len?-1:y[a+k];
    int b2=b+k>=len?-1:y[b+k];
    return a1==b1&&a2==b2;
}
void make_sa()
{
    int *x=t1,*y=t2,m=len+1;
    for(int i=0;i<len;i++)++cc[x[i]=a[i]];
    for(int i=1;i<m;i++)cc[i]+=cc[i-1];
    for(int i=len-1;i>=0;i--)sa[--cc[x[i]]]=i;
    for(int k=1;k<len;k<<=1)
    {
        int p=0;
        for(int i=len-k;i<len;i++)y[p++]=i;
        for(int i=0;i<len;i++)
            if(sa[i]>=k)y[p++]=sa[i]-k;
        for(int i=0;i<m;i++)cc[i]=0;
        for(int i=0;i<len;i++)++cc[x[y[i]]];
        for(int i=1;i<m;i++)cc[i]+=cc[i-1];
        for(int i=len-1;i>=0;i--)sa[--cc[x[y[i]]]]=y[i];
        swap(x,y);x[sa[0]]=0;m=1;
        for(int i=1;i<len;i++)x[sa[i]]=cmp1(y,sa[i],sa[i-1],k)?m-1:m++;
        if(m>=len)break;
    }
    for(int i=0;i<len;i++)rank[sa[i]]=i;
}
void make_height()
{
    int k=0;
    for(int i=0;i<len;i++)
    {
        if(!rank[i])continue;
        int j=sa[rank[i]-1];
        if(k)k--;
        while(a[i+k]==a[j+k])k++;
        height[rank[i]]=k;
    }
}
void make_st()
{
    for(int i=0;i<len;i++)st[i][0]=height[i];
    for(int k=1;(1<<k)<len;k++)
        for(int i=0;i<len;i++)
            if(i+(1<<k)>len)break;
            else st[i][k]=min(st[i][k-1],st[i+(1<<k-1)][k-1]);
}
int ask_pre(int x,int l,int r,int p)
{
    if(pre[x]==-1||r<=p)return pre[x];
    int mid=l+r>>1;
    if(p<=mid)return ask_pre(x<<1,l,mid,p);
    else
    {
        int ls=ask_pre(x<<1,l,mid,p);
        int rs=ask_pre(x<<1|1,mid+1,r,p);
        if(ls==-1||rs==-1)return -ls*rs;
        else return max(ls,rs);
    }
}
int ask_nxt(int x,int l,int r,int p)
{
    if(nxt[x]==-1||p<=l)return nxt[x];
    int mid=l+r>>1;
    if(p>mid)return ask_nxt(x<<1|1,mid+1,r,p);
    else
    {
        int ls=ask_nxt(x<<1,l,mid,p);
        int rs=ask_nxt(x<<1|1,mid+1,r,p);
        if(ls==-1||rs==-1)return -ls*rs;
        else return min(ls,rs);
    }
}
void push_up(int x)
{
    int l=x<<1,r=x<<1|1;
    if(pre[l]==-1||pre[r]==-1)
         pre[x]=-pre[l]*pre[r];
    else
         pre[x]=max(pre[l],pre[r]);
    if(nxt[l]==-1||nxt[r]==-1)
         nxt[x]=-nxt[l]*nxt[r];
    else
         nxt[x]=min(nxt[l],nxt[r]);
}
void change(int x,int l,int r,int p)
{

    if(l==r)
    {
        pre[x]=nxt[x]=p;
        return;
    }
    int mid=l+r>>1;
    if(p>mid)change(x<<1|1,mid+1,r,p);
    else change(x<<1,l,mid,p);
    push_up(x);
}
int ask_st(int l,int r)
{
    if(l>r)swap(l,r);l++;
    int k=log2(r-l+1);
    return min(st[l][k],st[r-(1<<k)+1][k]);
}
int main()
{
    //freopen("incantation.in","r",stdin);
    //freopen("incantation.out","w",stdout);
    n=sc();
    for(int i=n-1;i>=0;i--)
        b[i].x=sc(),b[i].p=i;
    sort(b,b+n,cmp);
    for(int i=0;i<n;i++)
        if(b[i].x==b[i-1].x)
            a[b[i].p]=cnt;
        else
            a[b[i].p]=++cnt;
    len=n;make_sa();make_height();make_st();
    memset(pre,-1,sizeof(pre));
    memset(nxt,-1,sizeof(nxt));
    for(int i=n-1;i>=0;i--)
    {
        int l=ask_pre(1,0,n-1,rank[i]);
        int r=ask_nxt(1,0,n-1,rank[i]);
        int mx=0;
        if(l!=-1)mx=max(mx,ask_st(l,rank[i]));
        if(r!=-1)mx=max(mx,ask_st(rank[i],r));
        change(1,0,n-1,rank[i]);
        ans[i]=n-i-mx;
    }
    for(int i=n-1;i>=0;i--)
        ans[i]+=ans[i+1],printf("%lld\n",ans[i]);
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值