1.1.3 数据信任
这一节,我们从 风险解析、信任解读、小结 三个方面来学习。
风险解析
数据信任的来源
建立数据来源可确认、使用范围可界定、流通过程可追溯、安全风险可防范的数据可信流通体系” • 完善数据全流程合规与监管规则体系 • 建立数据流通准入标准规则,强化市场主体数据全流程合规治 理,确保流通数据来源合法、隐私保护到位、流通和交易规范 • …… • 鼓励探索数据流通安全保障技术、标准、方案 参考资料: http://www.news.cn/politics/2022-12/19/c_1129220019.htm https://www.ndrc.gov.cn/xxgk/jd/zctj/202212/t20221219_1343636.html?code=&state=123
数据信任是什么?
当我们在谈数据信任的时候,所谓的信任,没有一个标准的答案,简单来说,信任其实就是我们达成共识一个基础,而且信任直接影响到交易或交换关系是否能够成立。
一般来说,我们对xx具有一定的信任,可以从以下四个方面来进行简单的衡量: ①身份可确认,②利益可依赖,③能力有预期,④行为有后果
数据流通的风险解读
在法律层面: 数据流通的风险主要包括违反数据保护法规、侵犯个人隐私权、违反知识产权等。例如,如果数据流通过程中未经用户同意或未遵守相关法律规定,可能会导致数据泄露或被滥用,从而引发法律责任和赔偿。 在技术层面: 数据流通的风险主要包括数据安全性、数据完整性和数据可用性等问题。例如,数据在传输过程中可能会遭受黑客攻击、病毒感染或系统故障等,导致数据丢失、损坏或被篡改,从而影响数据的可靠性和有效性。此外,技术层面的风险还包括数据存储和管理不当,导致数据难以追踪和审计。
信任解读
二十条里面的数据权属
如何做到数据信任
数据权属是指数据的所有权和控制权,它是数据外循环中信任焦虑的关键问题之一。在数据外循环中,数据的所有权和控制权可能不明确,导致数据的使用和分享受到限制,从而引发信任焦虑。如果数据权属不明确,可能会导致数据被滥用或泄露,进而影响数据的安全性和隐私性。因此,明确数据权属是建立数据外循环中信任关系的重要基础。 一旦我们将数据的归属权划分之后,我们就可以在数据流通过程中确保数据提供方的数据持有权和经营方的经营权,并防止数据被滥用,从而有效促进使用权流通。
解决方案:主体信任 + 技术信任
数据外循环中信任焦虑的解决方案可以分为两个方面:主体信任和技术信任。 主体信任 - 是指对数据外循环中参与主体的信任,包括数据提供者、数据处理者和数据使用者。解决方案包括建立健全的法律法规体系,明确各方的权利和义务,加强对违法行为的惩罚力度,提高参与主体的诚信度。同时,通过第三方认证机构对参与主体进行资质认证,增加透明度和可信度。 - 常见的信任方式:感性判断、历史经验、信誉口碑等。 技术信任 - 是指对数据外循环中使用的技术的信任,包括数据加密、数据脱敏、数据追踪等技术手段。解决方案包括采用先进的数据安全技术,确保数据在传输、存储和处理过程中的安全性和隐私性。同时,通过技术手段实现数据的可追溯性和可审计性,增加数据外循环的透明度和可信度。 - 常见的信任方式:理性判断、技术测试、安全验证等。
从本质上来说,信任是对不确定性和复杂性的有效拆解后的充分了解和理解。一旦我们建立了基于安全可信的技术信任体系 那么支撑全行业数据要素安全可控流转就打下了一个坚实的基础。
小结