HBase优化

本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法。

1.垃圾回收器调优

当我们往hbase写入数据,它首先写入memstore当中,当menstore的值大于hbase.hregion.memstore.flush.size参数中设置的值后,就会写入硬盘。

在hbase-env.sh文件中,我们可以设置HBASE_OPTS或者HBASE_REGIONSERVER_OPTS,后者只影响region server进程。

export HBASE_REGIONSERVER_OPTS="-Xmx8g -Xms8g -Xmn128m -XX:+ UseParNewGC -XX:+ UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=70 - verbose:gc -XX:+PrintGCDetails -XX:+ PrintGCTimeStamps -Xloggc:$HBASE_HOME/logs/gc-$(hostname)-hbase.log"

-Xmx8g -Xms8g –Xmn128m :最大堆内存8G,最小堆内存8G,新生代内存-Xmn128m。

-XX:+UseParNewGC : 设置对于新生代的垃圾回收器类型,这种类型是会停止JAVA进程,然后再进行回收的,但由于新生代体积比较小,持续时间通常只有几毫秒,因此可以接受。

-XX:+UseConcMarkSweepGC :设置老生代的垃圾回收类型,如果用新生代的那个会不合适,即会导致JAVA进程停止的时间太长,用这种不会停止JAVA进程,而是在JAVA进程运行的同时,并行的进行回收。

-XX:CMSInitiatingOccupancyFraction :设置CMS回收器运行的频率,避免前两个参数引起JAVA进程长时间停止,设置了这个之后,不需要停止JAVA进程,但是会提高CPU使用率。

最后两句是输出详细的日志。

2 本地memstore分配缓冲区

MemStore-Local Allocation Buffer,是Cloudera在HBase 0.90.1时提交的一个patch里包含的特性。它基于Arena Allocation解决了HBase因Region flush导致的内存碎片问题。

MSLAB的实现原理(对照Arena Allocation,HBase实现细节):

  • MemstoreLAB为Memstore提供Allocator。
  • 创建一个2M(默认)的Chunk数组和一个chunk偏移量,默认值为0。
  • 当Memstore有新的KeyValue被插入时,通过KeyValue.getBuffer()取得data bytes数组。将data复制到Chunk数组起始位置为chunk偏移量处,并增加偏移量=偏移量+data.length。
  • 当一个chunk满了以后,再创建一个chunk。
  • 所有操作lock free,基于CMS原语。

优势:

  • KeyValue原始数据在minor gc时被销毁。
  • 数据存放在2m大小的chunk中,chunk归属于memstore。
  • flush时,只需要释放多个2m的chunks,chunk未满也强制释放,从而为Heap腾出了多个2M大小的内存区间,减少碎片密集程度。

开启MSLAB

hbase.hregion.memstore.mslab.enabled=true // 开启MSALB 
hbase.hregion.memstore.mslab.chunksize=2m // chunk的大小,越大内存连续性越好,但内存平均利用率会降低,要比插入的单元格的数据大一些。
hbase.hregion.memstore.mslab.max.allocation=256K // 通过MSLAB分配的对象不能超过256K,否则直接在Heap上分配,256K够大了。

3 Compression 压缩

数据量大,边压边写也会提升性能的,毕竟IO是大数据的最严重的瓶颈,哪怕使用了SSD也是一样。众多的压缩方式中,推荐使用SNAPPY。从压缩率和压缩速度来看,性价比最高。

HColumnDescriptor hcd = new HColumnDescriptor(familyName);   
hcd.setCompressionType(Algorithm.SNAPPY);  

4 批量写

通过调用HTable.put(Put)方法可以将一个指定的row key记录写入HBase,同样HBase提供了另一个方法:通过调用HTable.put(List<Put>)方法可以将指定的row key列表,批量写入多行记录,这样做的好处是批量执行,只需要一次网络I/O开销,这对于对数据实时性要求高,网络传输RTT高的情景下可能带来明显的性能提升。

多线程并发写

在客户端开启多个 HTable 写线程,每个写线程负责一个 HTable 对象的 flush 操作,这样结合定时 flush 和写 buffer(writeBufferSize),可以既保证在数据量小的时候,数据可以在较短时间内被 flush(如1秒内),同时又保证在数据量大的时候,写 buffer 一满就及时进行 flush。

批量读

通过调用 HTable.get(Get) 方法可以根据一个指定的 row key 获取一行记录,同样 HBase 提供了另一个方法:通过调用 HTable.get(List) 方法可以根据一个指定的 row key 列表,批量获取多行记录,这样做的好处是批量执行,只需要一次网络 I/O 开销,这对于对数据实时性要求高而且网络传输 RTT 高的情景下可能带来明显的性能提升。

缓存查询结果

对于频繁查询 HBase 的应用场景,可以考虑在应用程序中做缓存,当有新的查询请求时,首先在缓存中查找,如果存在则直接返回,不再查询 HBase;否则对 HBase 发起读请求查询,然后在应用程序中将查询结果缓存起来。至于缓存的替换策略,可以考虑 LRU 等常用的策略。


5 HBase数据表优化

预分区

默认情况下,在创建HBase表的时候会自动创建一个Region分区,当导入数据的时候,所有的HBase客户端都向Region写数据,知道这个Region足够大才进行切分,一种可以加快批量写入速度的方法是通过预先创建一些空的Regions,这样当数据写入HBase的时候,会按照Region分区情况,在进群内做数据的负载均衡。

Rowkey优化

rowkey是按照字典存储,因此设置rowkey时,要充分利用排序特点,将经常一起读取的数据存储到一块,将最近可能会被访问的数据放到一块。
rowkey若是递增生成的,建议不要使用正序直接写入,可以使用字符串反转方式写入,使得rowkey大致均衡分布,这样设计的好处是能将RegionServer的负载均衡,否则容易产生所有新数据都在集中在一个RegionServer上堆积的现象,这一点还可以结合table的与分区设计。

减少Column Family数量

不要在一张表中定义太多的column family。目前HBase并不能很好的处理超过2-3个column family的表,因为某个column family在flush的时候,它临近的column family也会因关联效应被触发flush,最终导致系统产生更过的I/O;

设置最大版本数

创建表的时候,可以通过 HColumnDescriptor.setMaxVersions(int maxVersions) 设置表中数据的最大版本,如果只需要保存最新版本的数据,那么可以设置 setMaxVersions(1)。

缓存策略(setCaching)

创建表的时候,可以通过HColumnDEscriptor.setInMemory(true)将表放到RegionServer的缓存中,保证在读取的时候被cache命中。

设置存储生命期

创建表的时候,可以通过HColumnDescriptor.setTimeToLive(int timeToLive)设置表中数据的存储生命周期,过期数据将自动被删除

磁盘配置

每台RegionServer管理10-1000个Regions。每个Region在1-2G,则每台server最少要10G,最大要1000*2G=2TB,考虑3备份,需要6TB。方案1是3块2TB磁盘,2是12块500G磁盘,带宽足够时,后者能提供更大的吞吐率,更细力度的冗余备份,更快速的单盘故障恢复。

分配何时的内存给RegionServer

在不影响其他服务的情况下,越大越好。在HBase的conf目录下的hbase-env.sh的最后添加export HBASE_REGIONSERVER_OPTS="- Xmx16000m $HBASE_REGIONSERVER_OPTS"
其中16000m为分配给REgionServer的内存大小。

写数据的备份数

备份数与读性能是成正比,与写性能成反比,且备份数影响高可用性。有两种配置方式,一种是将hdfs-site.xml拷贝到hbase的conf目录下,然后在其中添加或修改配置项dfs.replication的值为要设置的备份数,这种修改所有的HBase用户都生效。另一种方式是改写HBase代码,让HBase支持针对列族设置备份数,在创建表时,设置列族备份数,默认为3,此种备份数支队设置的列族生效。

客户端一次从服务器拉取的数量

通过配置一次拉取较大的数据量可以减少客户端获取数据的时间,但是他会占用客户端的内存,有三个地方可以进行配置

  1. 在HBase的conf配置文件中进行配置hbase.client.scanner.caching;
  2. 通过调用HTble.setScannerCaching(int scannerCaching)进行配置;
  3. 通过调用Sacn.setCaching(int caching)进行配置,三者的优先级越来越高。

客户端拉取的时候指定列族

scan是指定需要column family,可以减少网络传输数据量,否则默认scan操作会返回整行所有column family的数据

拉取完数据之后关闭ResultScanner

通过 scan 取完数据后,记得要关闭 ResultScanner,否则 RegionServer 可能会出现问题(对应的 Server 资源无法释放)。

RegionServer的请求处理IO线程数

较少的IO线程适用于处理单次请求内存消耗较高的Big Put场景(大容量单词Put或设置了较大cache的scan,均数据Big Put)或RegionServer的内存比较紧张的场景。

较多的IO线程,适用于单次请求内存消耗低,TPS要求(每次事务处理量)非常高的场景。这只该值的时候,以监控内存为主要参考

在hbase-site.xml配置文件中配置项为hbase.regionserver.handle.count

Region大小设置

配置项hbase.hregion.max.filesize,所属配置文件为hbase-site.xml,默认大小是256m。

在当前RegionServer上单个Region的最大存储空间,单个Region超过该值时,这个Region会被自动split成更小的Region。小Region对split和compaction友好,因为拆分Region或compact小Region里的StoreFile速度非常快,内存占用低。缺点是split和compaction会很频繁,特别是数量较多的小Region不同的split,compaction,会导致集群响应时间波动很大,Region数量太多不仅给管理上带来麻烦,设置会引起一些HBase个bug。一般 512M 以下的都算小 Region。大 Region 则不太适合经常 split 和 compaction,因为做一次 compact 和 split 会产生较长时间的停顿,对应用的读写性能冲击非常大。

此外,大 Region 意味着较大的 StoreFile,compaction 时对内存也是一个挑战。如果你的应用场景中,某个时间点的访问量较低,那么在此时做 compact 和 split,既能顺利完成 split 和 compaction,又能保证绝大多数时间平稳的读写性能。compaction 是无法避免的,split 可以从自动调整为手动。只要通过将这个参数值调大到某个很难达到的值,比如 100G,就可以间接禁用自动 split(RegionServer 不会对未到达 100G 的 Region 做 split)。再配合 RegionSplitter 这个工具,在需要 split 时,手动 split。手动 split 在灵活性和稳定性上比起自动 split 要高很多,而且管理成本增加不多,比较推荐 online 实时系统使用。内存方面,小 Region 在设置 memstore 的大小值上比较灵活,大 Region 则过大过小都不行,过大会导致 flush 时 app 的 IO wait 增高,过小则因 StoreFile 过多影响读性能。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值