Kmeans算法及相关优化

KMeans是一种无监督聚类算法,旨在通过迭代优化使簇内点接近、簇间点远离。初始类簇中心点的选择对算法效果至关重要,可采用随机选择、最远距离选择或层次聚类方法。K值的选取可通过类簇指标变化来判断,如平均半径或直径。算法流程包括初始化、点分配、中心点更新等步骤。优化包括离群点检测、距离计算优化和K值自适应调整。KNN算法是监督学习,通过最近邻的类别决定新样本的类别,常用于分类和回归,但计算量大,易受样本不平衡影响。交叉验证用于评估模型泛化能力。
摘要由CSDN通过智能技术生成


本文主要参考https://www.cnblogs.com/pinard/p/6164214.html
和https://www.cnblogs.com/jojo123/p/6822908.html,百度百科

Kmeans算法简介

(1)Kmeans算法是一种无监督聚类算法。
(2)算法的目标:给定样本集,根据样本之间的距离大小,将样本划分为K个簇,让簇内的点之间的距离尽可能近,让簇间的点的距离尽可能的远。
(3)算法的思路:在给定K值和K个初始类簇中心点的情况下,把每个点(样本数据)分到距离最近的类簇中心点代表的类簇中。分配完毕后,根据一个类簇中的所有点重新计算类簇中心点,然后再迭代的进行分配点和更新类簇中心点的过程,直到没有(或者是预期要求)点被分配到其它类簇中,没有(或达到预期要求)类簇中心点再发生更新,误差平方和最小(或达到某一条件)。
假设簇划分为( C 1 C_{1} C1 C k C_{k} Ck),误差平方和E表示为
E = ∑ i = 1 k ∑ x ∈ C i ∣ x − u i ∣ 2 E = \sum_{i=1}^k\sum_{x\in C_{i}}|x - u_{i}|^2 E=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值