http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82662#problem/F
题目大意:有n个数的序列,通过交换使其变得有序,交换的原则是每次交换的数字ai和aj,(j-i+1)必须是质数,要求在5n步内完成。
解题思路:完全没懂这个题,看网上都说用哥德巴赫猜想,但是
“由猜想可得,每个大于等于5的数都可以有三个质数相加获得,而2,3都是质数,4=2+2,所以所有大于等于2的数都可以用质数表示。所以无论i,j多少,每次交换i,j都可以在三步之内获得”这个我觉得只能证明能在5n步内完成交换吧。。。
首先,肯定是需要对质数进行判断的,0和1不是质数
接着,如果a[i]的值不是其对应的i的位置,那么执行交换处理,处理a[i]和i的值:如果i>a[i],swap;从较大的数开始向较小数处理,如果是k-x+1质数,则:交换a[k]和a[x]的值,把本次交换记录下来,再执行i和y的处理。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 100005
int l[N<<2], r[N<<2], a[N];
bool prime[N];
int ans, n;
void primeNumber()
{
memset(prime, true, sizeof(prime));
prime[0] = prime[1] = false;
for(int i = 2; i < N; i++)
{
if(prime[i])
{
for(int j = i+i; j < N; j+=i)
prime[j] = false;
}
}
}
void exchang(int x, int y)
{
if(x > y)
swap(x, y);
for(int i = y; i > x; i--)
{
if(prime[i-x+1])
{
swap(a[i],a[x]);
l[ans] = x;
r[ans++] = i;
exchang(i,y);
break;
}
}
}
int main()
{
primeNumber();
while(cin >> n)
{
ans = 0;
for(int i = 1; i <= n; i++)
cin >> a[i];
for(int i = 1; i <= n; i++)
while(i!=a[i])
exchang(i,a[i]);
cout << ans << endl;
for(int i = 0; i < ans; i++)
cout << l[i] << " " << r[i] << endl;
}
return 0;
}